[1]程 燕,樊巍巍,刘随心,等.西安市PM2.5 和碳气溶胶质量浓度变化特征研究[J].西安建筑科技大学学报:自然科学版,2014,46(06):888-893.[doi:10.15986/j.1006-7930.2014.06.022]
 CHENG Yan,FAN Weiwei,LIU Suixin,et al.Characteristics of PM2.5 and carbonaceous aerosols in Xi’an[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(06):888-893.[doi:10.15986/j.1006-7930.2014.06.022]
点击复制

西安市PM2.5 和碳气溶胶质量浓度变化特征研究()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年06期
页码:
888-893
栏目:
出版日期:
2014-12-31

文章信息/Info

Title:
Characteristics of PM2.5 and carbonaceous aerosols in Xi’an
文章编号:
1006-7930(2014)06-0888-06
作者:
程 燕1樊巍巍1刘随心2肖 波3郭伟1 李文武1王 妮1
(1. 西安交通大学人居环境与建筑工程学院,陕西 西安 710049;2. 中国科学院地球环境研究所,陕西 西安 710075;3. 西安市气象局,陕西 西安 710016)
Author(s):
CHENG Yan1 FAN Weiwei1 LIU Suixin2 XIAO Bo3 GUO Wei1 LI Wenwu1 WANG Ni1
(1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. Institute of Earth Environment, Chinese Academy of Science, Xi’an 710075, China; 3. Xi’an Meteorological Bureau, Xi’an 710016, China)
关键词:
西安PM2.5有机碳(OC)元素碳(EC)
Keywords:
Xi’an PM2.5 organic carbon (OC) elemental carbon (EC)
分类号:
X13
DOI:
10.15986/j.1006-7930.2014.06.022
文献标志码:
A
摘要:
为了探讨西安市PM2.5 和碳气溶胶质量浓度变化特征,从2012 年3 月~2013 年2 月对西安市大气 PM2.5 进行了为期一年的观测,并分析了有机碳(OC)和元素碳(EC)的质量浓度变化特征.结果显示,西安市2012 年3 月~2013 年2 月日均PM2.5 质量浓度变化幅度为26.9 ~505.1 μg/m3, PM2.5 年平均质量浓度为 114.0±86.6 μg/m3,是中国PM2.5 空气质量标准(GB 3095-2012)年平均二级标准值 (35 μg/m3) 的3.3 倍.PM2.5 季节变化特征为冬季 > 秋季 > 春季 > 夏季.OC 和EC 年平均浓度值为21.44±15.76 μg/m3 和6.16±3.38 μg/m3,OC/EC 年平均值为3.37±0.95,变化范围为1.80~5.84,表明有二次有机碳气溶胶的存在.主成分分析法表明,西安市大气中的碳气溶胶主要来自汽油车和柴油车尾气、二次碳气溶胶以及生物质燃烧.
Abstract:
Daily PM2.5, organic carbon (OC), and elemental carbon (EC) were measured during 2012.3﹣2013.2 to study the temporal variations of PM2.5 and carbonaceous aerosols. PM2.5 showed a fluctuation from 26.9 to 505.1 μg/m3 during the sampling period. The annual average PM2.5 mass concentration was 114.0±86.6 μg/m3, exceeding the Chinese air quality standard (GB 3095-2012) for PM2.5 (35 μg/m3) by a factor of 3.3. The seasonal patterns ranked in descending order as follows, winter>autumn>spring>summer. The average concentrations for OC and EC were 21.44±15.76 and 6.16±3.38 μg/m3. OC/EC ratios ranged from 1.80 to 5.84, with the average being 3.37±0.95, suggesting the presence of secondary organic aerosols in atmosphere. Results of principal component analysis showed that major sources of carbonaceous aerosols include gasoline- and diesel-fueled vehicles, secondary aerosols and biomass burning.

参考文献/References:

[1] 杨复沫, 贺克斌, 马永亮, 等. 北京PM2.5 浓度的变化特征及其与PM10、TSP 的关系[J]. 中国环境科学, 2002, 22(6): 505-510.

YANG Fumo , HE Kwbin, MA Yongliang, et al. Variation characteristics of PM2.5 concentration and its relationship with PM10 and TSP in Beijing[J]. China Environmental Science. 2002,22(6): 506-510.

[2] KOCH M. Airborne fine particulates in the environment: a review of health effect studies, monitoring data and emission inventories [R]. Laxengurg, Austria: IIASA IR-00-004, 2000.

[3] PANYACOSIT L. A review of particulate matter and health: focus on developing countries[R]. Laxengurg, Austria: IIASA IR-00-005, 2000.

[4] SHWARTZ J, DOCKERY D W, NEAS L M, et al. Is daily mortality associated with specially the particles? [J]. Air and Waste Management Association, 1996(46): 927-939.

[5] CHRISTOFOROU C S, SALMON L G, HANNIGAN M P, et al. Trends in fine particle concentration and chemical composition in southern California [J]. Journal of the Air & Waste Management Association, 2000(50): 43-53.

[6] CHAN Y C, SIMPSON R W, MCTAINSH, G H, et al. Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia [J]. Atmospheric Environment, 1997(31): 3773-3785.

[7] JOHN T. Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios [M]. New York: Cambridge University Press, 1995: 60-90.

[8] VAIDA V, TUCK A F, ELLISON G B. Optical and chemical properties of atmospheric organic aerosols [J]. Physical Chemistry Earth, 2000, 25(3): 195-198.

[9] STREETS D G, GUPTA S, WALDHO S T, et al. Black carbon emissions in China [J]. Atmospheric Environment, 2001, 35(25): 4281-4296.

[10] 李芳. 西安市大气颗粒物PM2.5 污染特征及其与降水关系研究[D]. 西安:西安建筑科技大学,2012.

LI Fang. Analysis on characteristics of atmospheric particles PM2.5 and the relationship between PM2.5 and the precipitation of Xi’an [D]. Xi’an : Xi’an Univ. of Arch. and Tech, 2012.

[11] 刘随心, 曹军骥, 安芷生. 西安大气细粒子(PM2.5)质量浓度变化特征及其影响因素[C]//中国颗粒学会第六届学术年会暨海峡两岸颗粒技术研讨会. 台湾:2008.

LIU, Suixin, CAO, Junji, AN Zhisheng. Analysis on Characteristics of atmospheric particles PM2.5 and the relationship between PM2.5 and the precipitation of Xi’an[C]//6th Annual Conference of Chinese Society of Particuology cum Symposium on Particle Technology across. Taiwan Straits, 2008.

[12] WATSON J G. Visibility: Science and Regulation [J].Journal of the Air & Waste Management Association, 2002,52(6):628-713.

[13] 张承中,丁超, 周变红,等. 西安市冬、夏两季PM2.5 中碳气溶胶的污染特征分析[J]. 环境工程学报, 2013,7(4): 1477-1481.

ZHANG Chengzhong, DING Chao, ZHOU Bianhong, et al. Pollution characteristics of carbon aerosol in PM2.5 of Xi’an during winter and summer[J]. Chinese Journal of Environmental Engineering, 2013,7(4): 1477-1481.

[14] CAO J J, WU F, CHOW J C, et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China[J]. Atmos. Chem. Phys., 2005(5): 3127-3137.

[15] TURPIN B J, CARY R A, HUNTZICKER J J. An in-situ, time-resolved analyzed for aerosol organic and elemental carbon [J]. Aerosol Science Technology, 1990, 12(1):161-171.

[16] WATSON J G, CHOW J C, LOWENTHAL D H, Difference in the carbon composition of source profile for diesel- and gasoline-powered vehicles [J]. Atmospheric Environment, 1994(28): 2493-2505.

[17] KIM E, HOPKE P K, EDGERTON, E S. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization [J]. Atmospheric Environment, 2004(38): 3349-3362.

相似文献/References:

[1]郭 华,高 枫,董俊刚,等.公共餐饮建筑室内空气质量测试与分析[J].西安建筑科技大学学报:自然科学版,2013,45(04):559.[doi:10.15986/j.1006-7930.2013.04.016]
 GUO Hua,GAO Feng,DONG Jun-gang,et al.Measurement and analysis on the indoor air quality in the public catering building[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(06):559.[doi:10.15986/j.1006-7930.2013.04.016]
[2]袁宏林,等.西安市降雨水质变化规律分析[J].西安建筑科技大学学报:自然科学版,2011,43(03):391.[doi:DOI :10.15986/j .1006-7930.2011.03.023]
 YUAN Hong-lin,CHEN Hai-qing,et al.Analysis of quality variation of rainwater in Xi′an[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2011,43(06):391.[doi:DOI :10.15986/j .1006-7930.2011.03.023]
[3]薛立尧,张 沛,刘 晖,等.城市形态演变绘图方法研究——以90年代以来西安为例[J].西安建筑科技大学学报:自然科学版,2016,48(03):424.[doi:10.15986/j.1006-7930.2016.03.020]
 XUE Liyao,ZHANG Pei,LIU Hui,et al.Research on graphic drawing methods of urban form’s evolution taking Xi’an as an example since 1990s[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(06):424.[doi:10.15986/j.1006-7930.2016.03.020]
[4]狄育慧,郑治中,张博轩,等.西安市城市热岛环境动态演化规律研究[J].西安建筑科技大学学报:自然科学版,2016,48(04):551.[doi:10.15986/j.1006-7930.2016.04.015]
 DI Yuhui,ZHENG Zhizhong,ZHANG Boxuan,et al.Study on dynamic evolvement process of the urban heat island in Xi’an[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(06):551.[doi:10.15986/j.1006-7930.2016.04.015]
[5]史煜.西安建筑近代化演变分析史煜[J].西安建筑科技大学学报:自然科学版,2018,50(01):65.[doi:10.15986/j.1006-7930.2018.01.011]
 SHI Yu.Evolution of the architectural modernization of Xian[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2018,50(06):65.[doi:10.15986/j.1006-7930.2018.01.011]
[6]李 冰,张 宁.丹凤门与明城墙注目下的西安站扩建站房形态设计[J].西安建筑科技大学学报:自然科学版,2022,54(06):947.[doi:10.15986/j.1006-7930.2022.06.019 ]
 LI Bin,ZHANG Ning.Form design of Xi'an railway station expansion under the attention of Danfeng Gate and Ming City Wall[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2022,54(06):947.[doi:10.15986/j.1006-7930.2022.06.019 ]

备注/Memo

备注/Memo:
收稿日期:2014-06-18   修改稿日期:2014-12-02
基金项目:国家自然科学青年基金项目(21107084)
作者简介:程燕(1977-),女,博士,副教授,主要从事大气化学与全球环境变化的研究. E-mail: chengyan@mail.xjtu.edu.cn
更新日期/Last Update: 2015-09-01