[1]翟 越,李 楠,赵均海,等.SHPB试验中应力波在损伤非线弹性材料中的传播[J].西安建筑科技大学学报:自然科学版,2015,(03):359-363.[doi:10.15986/j.1006-7930.2015.03.009]
 ZHAI Yue,LI Nan,ZHAO Junhai,et al.Stress wave propagation in damage nonlinear elastic rock materials specimen during SHPB tests[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2015,(03):359-363.[doi:10.15986/j.1006-7930.2015.03.009]
点击复制

SHPB试验中应力波在损伤非线弹性材料中的传播()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年03期
页码:
359-363
栏目:
出版日期:
2015-06-30

文章信息/Info

Title:
Stress wave propagation in damage nonlinear elastic rock materials specimen during SHPB tests
文章编号:
1006-7930(2015)03-0359-05
作者:
翟 越李 楠赵均海王思维
(长安大学地质工程与测绘学院,陕西 西安 710054)
Author(s):
ZHAI Yue LI Nan ZHAO Junhai WANG Siwei
(School of Geology Engineering and Geomatics, Changan University)
关键词:
SHPB岩石类材料损伤非线弹性本构方程波动方程
Keywords:
SHPB rock materials damage nonlinear elasticity constitutive equation wave equation
分类号:
TU375
DOI:
10.15986/j.1006-7930.2015.03.009
文献标志码:
A
摘要:
为了研究高应变率冲击压缩荷载作用下,岩石类材料的非线弹性力学特性,建立了描述SHPB 试验中应力波在考虑损伤及应变率强化效应的非线弹性岩石类材料中传播的波动方程.将混合遗传算法与有限差分法数值计算方法相结合,建立了数值分析程序,在花岗岩SHPB试验研究基础上,模拟了SHPB试验中从应力波进入入射杆到试件破碎的整个加载过程中应力波在入射杆、透射杆以及岩石类试件中的传播过程,进而求得试件上的应力与应变.由理论计算的应力应变曲线与试验曲线对比分析,验证了应力波在考虑损伤的非线弹性材料中的波动方程及数值分析方法的适用性和可靠性.
Abstract:
In order to study the viscoelastoplastic characteristics of rock-like materials under high-strain rate loading, firstly, control equation of the stress wave propagating in the non linear elastic rock material with strain rate strengthening and damage in Split Hopkinson Pressure Bar (SHPB) tests is established. Then based on the granite test, combining hybrid genetic algorithm with the finite difference method of numerical analysis, the stress wave propagation in two compressive bar and specimen is numerically analyzed in the whole loading process from the incident wave into the incident bar to specimen broken, and then strain and stress of specimen are obtained. Finally, through the comparison of calculation curve and experimental curve, the reliability of the stress wave equations and numerical analysis method are validated.

参考文献/References:

[1] DAI feng, HUANG Sheng, XIA Kaiwen, et al Some fundamental issues in dynamic compression and tension tests of rock using split Hopkinson pressure bar[J]. Rock Mech Rock Eng, 2010, 43: 657-666.

[2] EZIO Cadoni. Dynamic characterization of orthogenesis rock subjected to intermediate and high strain rates in tension[J]. Rock Mech Eng, 2010, 43: 667-676.

[3] YAN fei, FENG Xiating, CHEN Rong, et al. Dynamic tensile failure of the rock interface between tuff and basalt[J]. Rock Mech Rock Eng, 2012, 45: 341-348.

[4] 翟毅, 许金余, 王鹏辉. 纤维混凝土动态压缩力学性能的SHPB试验研究[J]. 西安建筑科技大学学报: 自然科学版, 2009, 41(1): 141-148.

ZHAI Yi, XU Jinyu, WANG Penghui. Dynamic compressive testing and mechanical behavior of fiber reinforced concrete using a split Hopkinson Pressure Bar[J]. J. Xi’an Univ. of Arch. &Tech: Natural Science Edition, 2009, 41(1): 141-148.

[5] 江见鲸, 贺小岗. 工程结构计算机仿真分析[M]. 北京: 清华大学出版社, 1996.

JANG Jianjing, HE Xiaogang. Computer simulation analysis of engineering structure[M]. Bejing: Tsinghua University press, 1996.

[6] 唐志平, 王礼立. SHPB试验的电脑化数据处理系统[J]. 爆炸与冲击, 1986, 6(4): 320-327.

TANG Zhiping, WANG Lili. Computerized data processing system of SHPB experiment[J]. Explosion and Shock Waves, 1986, 6(4): 320-327.

[7] LIFSHITZ J M, LEBER H. Data processing in the split Hopkinson pressure bar tests[J]. International Journal of Impact Engineering, 1994, 15(6): 723-733.

[8] LI X B, LO T S, Zhao J, et al. Oscillation Elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curve for rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37: 1055-1060.

[9] HAO Y, HAO H. Numerical investigation of the dynamic compressive behaviour of rock materials at high strain rate[J]. Rock Mech Rock Eng, 2013, 46: 373 -388.

[10] FOLLANSBEE P S, FRANTZ C. Wave propagation in the split Hopkinson pressure bar[J]. Journal of Engineering Materials Technology, 1983, 105: 61-66.

[11] FAN L F, REN F, MA G W. Experimental study on viscoelastic behavior of sedimentary[J]. Rock Mech Rock Eng, 2012, 45: 433-438.

[12] 王礼立. 应力波基础[M]. 北京: 国防工业出版社, 2005.

WANG Lili. Foundations of Stress Waves[M]. Beijing: National Defense Press, 2005.

[13] SAENZ L P. Discussion of Equation for the Stress-strain Curve of Concrete by Desay and Krishnan[J]. Journal of ACI, 1964, 61(9): 1229-1235.

[14] 吕西林, 金国芳, 吴晓涵. 钢筋混凝土结构非线性有限元理论与应用[M]. 上海: 同济大学出版社, 1996.

Lü Xilin, JIN Guofang, WU Xiaohan. The structure of the nonlinear finite element theory and application of reinforced concrete[M]. Shanghai: Tongji University press, 1996.

[15] 商怀帅, 杨鲁生. 基于损伤理论的混凝土双轴压本构模型[J]. 中南大学学报: 自然科学版, 2013, 44(1): 340-344.

SHANG Huaishuai, YANG Lusheng. Constitutive model of damage of concrete under biaxial compression[J]. Journal of Central South University: Science and Technology, 2013, 44(1): 340-344.

[16] 翟越, 马国伟, 赵均海, 等. 花岗岩和混凝土在冲击荷载下的动态性能比较研究[J]. 岩石力学与工程学报, 2007, 26(4): 762-768.

ZHAI Yue, MA Guowei, ZHAO Junhai, et al. Dynamic capability of granite and concrete under impact compressive loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 762-768.

[17] 翟越, 赵均海. 基于自适应混合遗传算法的岩石类材料动态参数反演分析[J]. 地球科学与环境学报, 2008, 30(3): 286-291.

ZHAI Yue, ZHAO Junhai. Inverse analysis based on adaptive hybrid genetic algorithms for dynamic characteristic parameters of rock materials[J]. Journal of Earth Sciences and Environment, 2008, 30(3): 286-291.

备注/Memo

备注/Memo:
收稿日期:2015.01.27   修改日期:2015.05.25
基金项目:国家自然科学基金项目(41272286, 41172257);陕西省自然科学基金项目(2009JQ5003)
作者简介:翟越(1975-),男,博士,副教授,主要研究建筑安全及材料动态特性等。E-mail: zy@chd.edu.cn
更新日期/Last Update: 2015-09-01