[1]聂少锋,孙玉金,毛 路,等.弧形内凹大跨屋盖结构风荷载特性的风洞试验与数值模拟[J].西安建筑科技大学学报(自然科学版),2016,48(05):669-675,642.[doi:10.15986/j.1006-7930.2016.05.009]
 NIE Shaofeng,SUN Yujin,MAO Lu,et al.Wind tunnel test and numerical simulation on wind load characteristics of large-span roof with concave surface[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(05):669-675,642.[doi:10.15986/j.1006-7930.2016.05.009]
点击复制

弧形内凹大跨屋盖结构风荷载特性的风洞试验与数值模拟()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
48
期数:
2016年05期
页码:
669-675,642
栏目:
出版日期:
2016-10-31

文章信息/Info

Title:
Wind tunnel test and numerical simulation on wind load characteristics of large-span roof with concave surface
文章编号:
1006-7930(2016)05-0669-07
作者:
聂少锋孙玉金毛 路陶 莹
(长安大学建筑工程学院,陕西 西安 710061)
Author(s):
NIE Shaofeng SUN Yujin MAO Lu TAO Ying
(School of Architecture and Civil Engineering, Chang’an University , Xi’an 710061,China)
关键词:
弧形内凹大跨屋盖风洞试验风压系数体型系数数值模拟
Keywords:
large-span roof with concave surface wind tunnel test wind pressure coefficient shape coefficient numerical simulation
分类号:
TU391; TU392.5
DOI:
10.15986/j.1006-7930.2016.05.009
文献标志码:
A
摘要:
对弧形内凹大跨钢屋盖航站楼结构的风荷载特性进行了风洞试验研究,得到屋盖平均和脉动风压系数,结构分区体型系数.理论分析采用基于Reynolds时均的RNG k-ε湍流模型,通过FLUENT软件对结构在部分风向角下的三维定常风场进行了数值模拟,分别从风压系数分布、分区体型系数变化和风速矢量图等方面进行详细研究,并与风洞试验结果对比分析.结果表明:风洞试验和数值模拟结果吻合良好,两者可相互验证.屋盖结构均承受风吸力作用,气流在迎风区域分离后形成的漩涡作用将使局部产生较大的负压区.屋盖上挑檐进行开洞处理,以及在挑檐下部设置导流板,可以有效减小其所受风荷载作用.
Abstract:
Wind tunnel test study on wind load characteristics of inner concave circular-arc large-span steel roof of an airport terminal structure was carried out, and the mean wind pressure coefficient, fluctuating wind pressure coefficient and structure partition shape coefficient of the roof were obtained. The RNG κ-ε model based on Reynolds equation was used for theoretical analysis, and computational fluid dynamics software Fluent was used to simulate the 3D wind field under different wind directions. Then, the distribution of wind pressure coefficients, changes of partition shape coefficients and wind velocity vector diagram were compared and analyzed with wind tunnel test in detail. The results show that the numerical simulation agrees well with the wind tunnel test. The roofs all suffer wind suction, and the vortex effect caused by separation of airflow in the windward area will lead to part large negative pressure zone. The wind loads can be reduced effectively by opening holes in the front eaves and setting guide plates in the bottom eaves in the meantime

参考文献/References:

[1].FU Jiyang, ZHENG Qingxing, WU Jiurong, et al. Full-scale tests of wind effects on a long span roof structure[J]. Earthquake Engineering and Engineering Vibration, 2015, 14(2): 361-372.
[2].YE Jihong, DONG Xin. Wind pressure features of large-span flat roof in different wind fields induced by conical vortex[J]. Journal of the Chinese Institute of Engineers, 2015, 38(8): 975-990.
[3].金新阳, 杨易, 盛平, 等. 新广州火车站大跨屋盖结构风荷载风洞试验与数值模拟研究[J]. 建筑结构学报, 2009, 39(12): 55-58.
[4].JIN Xinyang, YANG Yi, SHENG Ping, et al. Research on wind loads of new Guangzhou Railway Station by wind tunnel test and numerical simulation.[J]. Journal of Building Structures, 2009, 39(12): 55-58.
[5].陆煜, 赵善博, 马文勇, 等. 双曲型塔柱大跨凸面悬挑结构风荷载特性研究[J]. 石家庄铁道大学学报(自然科学版), 2015, 28(4): 6-10.
[6].LU Yu, ZHAO Shanbo, MA Wenyong, et al. Study on wind loads of hyperbolic columnar structure with large-span convex cantilever roof[J]. Journal of Shijiazhuang Tiedao University(Natural science), 2015, 28(4): 6-10.
[7].吴迪, 武岳, 孙瑛. 大跨度屋盖结构极值风压概率分布特征研究[J]. 建筑结构学报, 2015, 36(3): 29-35.
[8].WU Di, WU Yue, SUN Ying. Probability distribution characteristics of extreme wind pressure for large span roofs[J]. Journal of Building Structures, 2015, 36(3): 29-35.
[9].何星星, 苏波, 石启印. 阶梯型大跨屋盖结构风荷载数值模拟研究[J]. 防灾减灾工程学报, 2015, 35(3): 307-312.
[10].HE Xingxing, SU Bo, SHI Qiyin. Numerical simulation of wind-induced loads on large span ladder-type roof structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(3): 307-312.
[11].张明亮, 李秋胜, 陈伏彬, 等. 复杂体型大跨屋盖表面风压分布的试验研究[J]. 湖南大学学报(自然科学版), 2011, 38(10): 1-6.
[12].ZHANG Mingliang, LI Qiusheng, CHEN Fubin, et al. Experimental study of wind pressure distributions on a long-span complex roof structure[J]. Journal of hunan University(Natural Sciences), 2011, 38(10): 1-6.
[13].中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB50009-2012[S]北京: 中国建筑工业出版社, 2012.
[14].Ministry of housing and urban-rural development of the People’s Republic of China. Load code for building structures: GB50009-2012[S]. Beijing: China Building Industry Press, 2012.
[15].日本建筑学会. 建筑风荷载流体计算指南[M]. 孙瑛, 孙晓颖, 曹曙阳, 译. 北京: 中国建筑工业出版社, 2010.
[16].Architectural Institute of Japan. Guide for numerical prediction of wind loads on buildings[M]. SUN Ying, SUN Xiaoying, CAO Shuyang, translated . Beijing: China Building Industry Press, 2010.
[17].AIJ. Recommendations for loads on buildings[S]. Tokyo, Japan: Architectural Institute of Japan, 2004.

相似文献/References:

[1]聂少锋,周绪红,陶 莹,等.复杂体型低矮房屋风荷载特性风洞试验研究[J].西安建筑科技大学学报(自然科学版),2016,48(06):832.[doi:10.15986/j.1006-7930.2016.06.010]
 NIE Shaofeng,ZHOU Xuhong,TAO Ying,et al.Wind tunnel test on wind load characteristics of low-rise buildings with complex shape[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(05):832.[doi:10.15986/j.1006-7930.2016.06.010]

备注/Memo

备注/Memo:
基金项目:陕西省工业攻关项目(2014K06-23);陕西省青年科技新星项目(2016KJXX-51);陕西省建设厅建设科技计划项目(2014-K14)
收稿日期:2016-05-08 修改稿日期:2016-10-25
作者简介:聂少锋(1981-),男,博士,副教授,从事钢结构、结构风工程研究.E-mail:niesf126@126.com
更新日期/Last Update: 2016-11-24