[1]许 健,袁 俊,管顺清,等.多年冻土区锥柱基础抗拔承载性能试验研究[J].西安建筑科技大学学报(自然科学版),2017,49(01):70-75.[doi:10.15986/j.1006-7930.2017.01.011]
 XU Jian,YUAN Jun,GUAN Shunqing,et al.Experimental studies on the uplift bearing capacity of cone-cylindrical foundation in permafrost area[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(01):70-75.[doi:10.15986/j.1006-7930.2017.01.011]
点击复制

多年冻土区锥柱基础抗拔承载性能试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年01期
页码:
70-75
栏目:
出版日期:
2017-03-03

文章信息/Info

Title:
Experimental studies on the uplift bearing capacity of cone-cylindrical foundation in permafrost area
文章编号:
1006-7930(2017)01-0070-06
作者:
许 健1袁 俊23管顺清2钱文君1
(1. 西安建筑科技大学土木工程学院,陕西西安 710055;2.中国电力工程顾问集团西北电力设计院有限公司,陕西西安710075;3. 中国科学院西北生态环境资源研究院冻土工程国家重点实验室,甘肃兰州730000)
Author(s):
XU Jian1 YUAN Jun23 GUAN Shunqing2 QIAN Wenjun1
(1.College of Civil Engineering, Xi’an Univ. of Arch. & Tech., Xian 710055, China; 2.Northwest Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Xi?an 710075, China; 3. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)
关键词:
多年冻土锥柱基础抗拔承载力温度场
Keywords:
permafrost cone-cylindrical foundation uplift bearing capacity temperature field
分类号:
TU445
DOI:
10.15986/j.1006-7930.2017.01.011
文献标志码:
A
摘要:
本文以青藏直流输电线路工程为背景,在活动层处于冻结和融化状态时,分别进行上拔和水平力组合荷载作用下锥柱基础抗拔承载特性真型载荷试验.试验表明:冻结期冻土地基整体处于冻结状态,冻土地基回冻情况良好;融化期最大融化深度与地基多年冻土上限较吻合,表明施工开挖对多年冻土地基热稳定性影响较小.上拔加载过程中基础底板接触土压力减小,基底扩展板上方土体土压力明显增大,基础侧壁土压力变化不明显.冻结期基础位移量显著低于融化期,承载力明显高于融化期;基础上拔荷载与上拔位移关系可采用幂函数模型进行预测.融化期基础抗拔承载力试验值与规范法计算结果比较吻合;冻结期试验抗拔承载力与规范计算值存在一定差异.
Abstract:
Based on the background of Qinghai-Tibet DC Engineering, the uplift bearing capacity of cone-cylindrical foundation under uplift and horizontal loads is put to test, while the active layer was in the freezing and thawing state. Research results show that the ground temperature is in a frozen state during the freezing period, indicating that the foundation refreezing is in a good condition. During the thawing period, the maximum melting depth is in accordance with the upper limit of permafrost, indicating that the effect of construction excavation on the thermal stability of frozen soil foundation is slight. The soil pressure of the foundation plate is reduced, the soil pressure on the top of the basal plate is obviously increased, and the pressure on the foundation wall is not obvious during the uplift loading process. The displacement of cone-cylindrical foundation in freezing period is significantly lower than that in the melting period and the bearing capacity is significantly higher than that in the melting period. The power function model can predict the relationship between uplift load and displacement. The calculation results of uplift bearing capacity by the standard method are in agreement with the experimental results in the melting period. However, there is some difference between the values of test and standard in the freezing period.

参考文献/References:

[1] ZHANG Mingyi, LAI Yuanming, GAO Zhihua, et al. Influence of boundary conditions on the cooling effect of crushed-rock embankment in permafrost regions of Qinghai-Tibetan Plateau[J]. Cold Regions Science & Technology, 2006, 44(3):225-239.
[2] SALLY A S, SUSAN R B. Moisture migration during freeze and thaw of unsaturated soils: modeling and large scale experiments [J]. Cold Regions Science and Technology, 1997, 25 (2): 33-45.
[3] CZURDA K A, HOHMANN M. Freezing effect on shear strength of clayey soils[J]. Applied Clay Science, 1997,12(1/2):165-187.
[4] QI Jilin, PIETER A. Vermeer, CHENG Guodong. Review of the influence of freeze-thaw cycles on soil geotechnical properties [J]. Permafrost and Periglacial Processes, 2006, 17 (3): 245-252.
[5] 王大雁,马巍,常小晓,等. 深部人工冻土抗变形特性研究[J]. 岩土工程学报,2005,27(4):418-421.
WANG Dayan, MA Wei, CHANG Xiaoxiao, et al. Study on resistance to deformation of artificially frozen soil in deep alluvium[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 418-421.
[6] 齐吉琳,马巍. 冻土的力学性质及研究现状[J]. 岩土力学,2010,31(1):133-143.
QI Jilin, MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 2010, 31(1): 133-143.
[7] 徐湘田,赖远明,刘峰,等. 冻土中几类力学试验方法的探讨[J]. 冰川冻土,2011,33(5): 1132-1138.
XU Xiangtian, LAI Yuanming, LIU Feng, et al. A study of mechanical test methods of frozen soil [J]. Journal of Glaciology and Geocryology, 2011, 35(5):1132-1138.
[8] 李东庆, 朱林楠. 荷载作用下冻土模型试验相似分析[J]. 自然科学进展, 1994, 4(3): 322–327.
LI Dongqing, ZHU Linnan. Similitude analysis of modeling test for pressure in the freezing-thawing process of soil[J]. Journal of Glaciology and Geocryology, 1994, 4(3): 322–327.
[9] 汪仁和,王伟,陈永锋. 冻土中单桩抗压承载力模型试验研究[J].冰川冻土,2005,27(2):188-193.
WANG Renhe, WANG Wei, CHEN Yongfeng. Model experimental study on compressive bearing capacity of single pile in frozen soil[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 188-193.
[10] 王旭,蒋代军,赵新宇,等. 青藏高原多年冻土区不同地温分区下大直径钻孔灌注桩回冻规律试验研究[J]. 岩石力学与工程学报,2004,23(24):4 206-4 211.
WANG Xu, JIANG Daijun, ZHAO Xinyu, et al. An experimental study on refreezing characteristics of large-diameter bored pile in different permafrost areas of the Qinghai–Tibet Plateau[J].Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4 206-4 211.
[11] 张建明,朱元林,张家懿. 动荷载下冻土中模型桩的沉降试验研究[J].中国科学(D 辑),1999,29(增 1):27-33.
ZHANG Jianming, ZHU Yuanlin, ZHANG Jiayi. Experimental study on settlement of model piles in frozen soil under dynamic loading[J]. Science in China(Series D), 1999, 29(Supp.1): 27-33.
[12] 臧国华,洪四永,李敬华,等. 青藏直流联网工程杆塔基础的防冻胀措施[J]. 电力建设,2012,33(12):40-43.
ZANG Guohua, HONG Siyong, LI Jinghua, et al. Anti-frost heave measures for tower foundation in DC Interconnection Project from Qinghai to Tibet[J]. Electric Power Construction, 2012, 33(12): 40-43.
[13] 丁士君,程永峰,李镜培,等. 青藏输电工程回填细粒冻土性质和铁塔基础载荷试验研究[J]. 土木建筑与环境工程,2013,35(增刊):105-111.
DING Shijun, CHENG Yongfeng, LI Jingpei, et al. Experimental study on fine-grained soil properties and tower foundation loading for the Qinghai-Tibet DC transmission line engineering[J]. Journal of Civil, Architectural and Environmental, 2013, 35(Suppl.):105-111.
[14] 苏凯,张建明,冯文杰,等. 多年冻土区斜坡地带锥柱基础初始回冻过程模型试验[J]. 岩土工程学报,2013,35(4):794-799.
SU Kai, ZHANG Jianming, FENG Wenjie, et al. Model tests on initial freezing process of column foundation on slope in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2013,35 (4):794-799.
[15] 国家能源局.架空输电线路基础设计技术规程: DL/T 5219-2014 [S]. 北京:中国计划出版社,2014.
National Energy Administration. Technical code for design of foundation of overhead transmission line: DL/T 5219-2014 [S].Beijing: China Planning Press, 2014.
[16] 鲁先龙,程永锋. 戈壁抗拔基础承载性能试验与计算[M].北京:中国电力出版社,2015.
LU Xianlong, CHENG Yongfeng. Experimental and computational analysis on uplift behavior of shallow belled pies in Gobi gravel[M]. Beijing: China Electric Power press, 2015 .
[17] 国家能源局.冻土地区架空输电线路基础设计技术规程: DL/T 5501-2015 [S]. 北京:中国计划出版社,2015.
National Energy Administration. Technical code for foundation design of overhead transmission line in frozen soil region: DL/T 5501-2015 [S].Beijing: China Planning Press, 2015.

备注/Memo

备注/Memo:
收稿日期:2016-01-12    修改稿日期:2017-01-03
基金项目:国家电网公司科学技术项目(SGKJJSKF[2009]553);冻土工程国家重点实验室开放基金项目(SKLFSE201312);西北电力设计院技术创新科研项目(XB1-TM04-2013)
作者简介:许健(1980-),男,博士,副教授,主要从事寒区岩土工程研究.E-mail: xujian@lzb.ac.cn
更新日期/Last Update: 2017-03-16