[1]罗 雷,赵西成武易洋,杨西荣,等.复合细化制备超细晶纯钛热稳定性研究[J].西安建筑科技大学学报(自然科学版),2017,49(05):747-0751.[doi:10.15986/j.1006-7930.2017.05.020]
 LUO Lei,ZHAO Xicheng,et al.Thermal stability of ultra-fine grained titanium by combined refining process[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(05):747-0751.[doi:10.15986/j.1006-7930.2017.05.020]
点击复制

复合细化制备超细晶纯钛热稳定性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年05期
页码:
747-0751
栏目:
出版日期:
2017-10-28

文章信息/Info

Title:
Thermal stability of ultra-fine grained titanium by combined refining process
文章编号:
1006-7930(2017)05-0747-05
作者:
罗 雷12赵西成12武易洋3杨西荣12刘晓燕1
(1. 西安建筑科技大学 冶金工程学院,陕西 西安710055;2.冶金技术国家级教学示范中心(西安建筑科技大学;3:西安热工研究院有限公司,陕西 西安710054)
Author(s):
LUO Lei1 2 ZHAO Xicheng1 2WU Yiyang3 YANG Xirong1 2 LIU Xiaoyan1
(1. College of Metallurgical Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 2. National Demonstration Center for Experimental Metallurgy Technology Education(Xi’an Univ. of Arch. & Tech.), Xi’an 710055, China; 3. Xi’an Thermal Power Research Institute Co. LTD, Xi’an 710054, China)
关键词:
复合细化超细晶纯钛退火组织性能
Keywords:
Combined Refining Process (ECAP+CR+RS)ultra-fine grained titanium (UFG Ti) annealing microstructure and properties
分类号:
TG166.5
DOI:
10.15986/j.1006-7930.2017.05.020
文献标志码:
A
摘要:
用复合细化方法(ECAP+冷轧+旋锻)制备出超细晶纯钛,利用透射电镜(TEM)、万能拉伸机、显微硬度计和扫描电镜(SEM)研究了不同退火温度对超细晶纯钛组织性能的影响.结果表明:复合细化制备超细晶纯钛的晶粒尺寸约为180 nm,其抗拉强度达到870 MPa,低温退火时(200~350 ℃),组织无明显变化,位错密度逐渐降低,晶界逐渐平直清晰,强度和硬度下降较为缓慢,超细晶纯钛的再结晶温度为350~400 ℃;退火温度高于400 ℃时,晶粒逐渐长大,超细晶纯钛的硬度显著下降.观察断口形貌可知,超细晶纯钛的断裂形式为韧性断裂,且随着退火温度的升高,等轴韧窝尺寸增大,深度变深.
Abstract:
Ultra-fine grained Titanium were processed by Combined Refining Process (Equal channel angular pressing (ECAP), cold rolling (CR), and rotary swaging (RS)) at room temperature. The effect of annealing temperature on microstructure and properties of ultra-fine grained Titanium (UFG Ti) were investigated by Transmission electron microscope (TEM), universal testing machine, microhardness tester and scanning electron microscope (SEM). The results show that the grain average size of UFG Ti is about 180 nm, and ultimate tensile strength of UFG Ti is over 870 MPa. When annealing at low temperature (200~350 ℃), the microstructure has no obvious change, the dislocation density decreased and the grain boundary gradually clearly, ultimate tensile strength and microhardness slightly decreased. The recrystallization temperature is range from 350 ℃ to 400 ℃. When annealing temperature was higher than 400 ℃, grain size of UFG Ti grew significantly, and microhardness decreased obviously. The fracture surface of UFG Ti shows hybrid tough fracture of dimple. With the increase of annealing temperature, the size and depth of dimples increase

参考文献/References:

References
[1] GOWTHAM S, ARUNNELLAIAPPAN , RAMESHBABU N, et al. An investigation on pulsed DC plasma electrolytic oxidation of cp-Ti and its corrosion behaviour in simulated body fluid [J]. Surface and Coatings Technology, 2016, 301: 63-73.
[2] MAHDI Babaei, CHANGIZ Dehghanian, MOJTABA Vanaki. Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency [J]. Applied Surface Science, 2015, 357:712-720.
[3] BART?OMIEJ Wysocki, PIOTR Maj, AGNIESZKA Krawczyńska, et al. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM) [J]. Journal of Materials Processing Technology, 2017, 241: 13-23.
[4] PENG J, ZHOU C Y, DAI Q, et al. Dwell fatigue and cycle deformation of CP-Ti at ambient temperature [J]. Materials & Design, 2015, 71:1-16.
[5] SELIM Kaan Yaz?c?, FAIZ Muhaffel, MURAT Baydogan. Effect of incorporating carbon nanotubes into electrolyte on surface morphology of micro arc oxidized Cp-Ti [J]. Applied Surface Science, 2014, 318: 10-14.
[6] MORADGHOLI J, MONSHI A, FARMANESH K. An investigation in to the mechanical properties of CP Ti/TiO2 nanocomposite manufactured by the accumulative roll bonding (ARB) process [J]. Ceramics International, 2017, 43(1): 201-207.
[7] JUSTIN L Milner, FADI Abu-Farha, CRISTINA Bunget, et al. Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding [J]. Materials Science and Engineering: A, 2013, 561:109-117.
[8] RIMMA Lapovok, VICTOR Mendoza, VENKATA N. Anumalasetty, et al. Prediction of ductile failure in CP-Titanium as criterion of SPD process design [J]. Journal of Materials Processing Technology, 2016, 229: 678-686.
[9] PACHLA W, KULCZYK M, PRZYBYSZ S, et al. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2 [J]. Journal of Materials Processing Technology, 2015, 221: 255-268.
[10] AN Baili, LI Zhirui, DIAO Xiaoou, et al. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP [J]. Materials Science and Engineering: C, 2016, 67: 34-41.
[11] HAJIZADEH K, EGHBALI B, TOPOLSKI K, et al. Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP at warm deformation region [J]. Materials Chemistry and Physics, 2014, 143(3): 1032-1038.
[12] CALVILLO P Rodriguez, CABRERA J M. Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing [J]. Materials Science and Engineering: A, 2015, 625: 311-320.
[13] GUNDEROV D V, POLYAKOV A V, SEMENOVA I P, et al. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing [J]. Materials Science and Engineering: A, 2013, 562:128-136.
[14] STOLYAROV Vladimir V, ZHU Yuntian T, LOWE Terry C, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion [J]. Materials Science and Engineering: A, 2001, 303(1/2): 82-89.
[15] 雷娜,赵西成,杨西荣,等. 工业纯钛电子背散射衍射试样的制备[J]. 材料导报,2011, 25: 203-204.
LEI Na, ZHAO Xicheng, YANG Xirong, et al. Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP at warm deformation region [J]. Mater Rev, 2011,25:203-204.
[16] ALEKSANDR Fomin, SERGEY Dorozhkin, MARINA Fomina, et al. Composition, structure and mechanical properties of the titanium surface after induction heat treatment followed by modification with hydroxyapatite nanoparticles [J]. Ceramics International, 2016, 42(9): 10838-10846.
[17] WANG Song, MA Zheng, LIAO Zhenhua, et al. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy [J]. Materials Science and Engineering: C, 2015, 57: 123-132.
[18] SHAH Furqan A, TROBOS Margarita, THOMSEN Peter, et al. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - is one truly better than the other [J]. Materials Science and Engineering: C, 2016, 62: 960-966.
[19] ZHANG Baicheng, LIAO Hanlin, CODDE Christian t. Microstructure evolution and density behavior of CP Ti parts elaborated by Self-developed vacuum selective laser melting system[J]. Applied Surface Science, 2013, 279: 310-316.
[20] MILNER Justin L, FADI AbuvFarha, KURFESS Thomas, et al. Effects of induced shear deformation on microstructure and texture evolution in CP-Ti rolled sheets[J]. Materials Science and Engineering: A, 2014, 619:12-25.

备注/Memo

备注/Memo:
收稿日期:2017-03-07 修改稿日期:2017-08-15
基金项目:国家自然科学基金51474170);2016JQ5026);(15JK1409)
作者简介:罗雷(1985-),男,博士生,工程师,主要从事超细晶材料制备及组织性能的研究. E-mail: luolei@xauat.edu.cn
更新日期/Last Update: 2017-11-10