[1]杜晓庆,林伟群,代 钦.矩形柱体气动性能的流场机理研究[J].西安建筑科技大学学报(自然科学版),2019,51(01):51-58.[doi:10.15986/j.1006-7930.2019.01.009]
 DU Xiaoqing,LIN Weiqun,DAI Chin.Numerical study on aerodynamic mechanism of rectangular cylinders[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(01):51-58.[doi:10.15986/j.1006-7930.2019.01.009]
点击复制

矩形柱体气动性能的流场机理研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年01期
页码:
51-58
栏目:
出版日期:
2019-02-28

文章信息/Info

Title:
Numerical study on aerodynamic mechanism of rectangular cylinders
文章编号:
1006-7930(2019)01-0051-08
作者:
杜晓庆12林伟群1代 钦23
(1. 上海大学 土木工程系,上海 200444;2. 上海大学 风工程和气动控制研究中心,上海 200444;3. 上海大学 上海市应用数学和力学研究所,上海 200444)
Author(s):
DU Xiaoqing12 LIN Weiqun1 DAI Chin23
(1. Department of Civil Engineering, Shanghai University, Shanghai 200444, China; 2. Wind Engineering and Aerodynamic Flow Control Research Center, Shanghai University, Shanghai 200444, China; 3. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200444, China)
关键词:
矩形柱绕流数值模拟气动性能流场结构分离泡二次涡
Keywords:
flow around rectangular cylinder numerical simulation aerodynamics flow structure separation bubble secondary vortex
分类号:
TU312
DOI:
10.15986/j.1006-7930.2019.01.009
文献标志码:
A
摘要:
矩形截面结构在土木工程中有广泛的应用,其气动性能的流场机理有待进一步澄清.采用k-ω SST湍流模型,对宽厚比B/D=1~4的矩形柱绕流进行了数值模拟研究,得到了矩形柱气动性能随宽厚比的变化情况,给出了不同宽厚比矩形柱的流场结构,探究了流场结构、表面风压和气动力之间的内在关系.研究表明:宽厚比B/D=1和2矩形柱的分离剪切层不会发生再附现象,但在B/D=2矩形柱的近尾流中会形成独特的二次涡,二次涡的出现会延缓旋涡脱落速度,造成Strouhal数降低;B/D=3和4矩形柱的分离剪切层会发生再附,在侧面形成分离泡,并导致尾流宽度变窄和平均阻力系数下降,在矩形柱侧面后角附近会出现负压逐渐减弱的压力恢复区
Abstract:
Structures with rectangular-section are widely used in the field of civil engineering, whose aerodynamic mechanism needs to be clarified further. The flow field around the rectangular cylinders with aspect ratios of B/D=1~4 is simulated using k-ω SST turbulent models. The effects of the aspect ratio on the aerodynamic characteristics and flow fields are investigated. Three categories of flow structure are proposed for various aspect ratios. The relationship between flow structures, pressure fields and aerodynamic forces are discussed as well. Results show that there is no reattachment of separated shear layers for the cylinders of B/D=1 and 2. However, for B/D=2, the special secondary vortices generated in the near wake of the cylinder, which causes a delay of vortex shedding and a noticeable decrease of Strouhal number. As for B/D=3 and 4, the reattachments of the separated shear layers promote the occurrence of separation bubbles on the side surface of the cylinder, which results in a narrower wake width, a reduction of drag force and a recovery of pressure at the side surface near the trailing edge.

参考文献/References:

[1]NAKAGUCHI H, HASHIMOTO K, MUTO S. An experimental study on aerodynamic drag of rectangular cylinders [J]. Journal of the Japan Society for Aeronautical and Space Sciences, 1968, 16(168):1-5.

[2]OKAJIMA A. Flow around a rectangular cylinder with a section of various width/height ratios [J]. Journal of Wind Engineering, 1983, 1983(17):1-19.

[3]SAKAMOTO H, HANIU H, KOBAYASHI Y. Fluctuating forces acting on rectangular cylinders in uniform flow (on rectangular cylinders with fully separated flow) [J]. Transactions of the Japan Society of Mechanical Engineers Part B, 1989, 55(516):2310-2317.

[4]KURODA M, TAMURA T, SUZUKI M. Applicability of LES to the turbulent wake of a rectangular cylinder-Comparison with PIV data [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(9):1242-1258.

[5]YU D, KAREEM A. Two-dimensional simulation of flow around rectangular prisms [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1996, 62(2-3):131-161.

[6]YU D, KAREEM A. Parametric study of flow around rectangular prisms using LES [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1998, 77(5):653-662.

[7]MURAKAMI S, MOCHIDA A. On turbulent vortex shedding flow past 2D square cylinder predicted by CFD [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1995, 54(94):191-211.

[8]YU D, KAREEM A. Numerical simulation of flow around rectangular prism [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, s 67-68(2):195-208.

[9]BRUNO L, FRANSOS D, COSTE N, et al. 3D flow around a rectangular cylinder: A computational study [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2010, 98(6-7):263-276.

[10]MANNINI C, SODA A, SCHEWE G. Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):469-482.

[11]SOHANKAR A. Large eddy simulation of flow past rectangular-section cylinders: Side ratio effects [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(5):640-655.

[12]YU D, BUTLER K, KAREEM A, et al. Simulation of the Influence of Aspect Ratio on the Aerodynamics of Rectangular Prisms [J]. Journal of Engineering Mechanics, 2013, 139(4):429-438.

[13]SHIMADA K., ISHIHARA T. Application of a modified k-ε model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders [J]. Journal of Fluids and Structures, 2002, 16: 465-485.

[14]王新荣, 顾明, 全涌. 低紊流度下二维矩形截面柱体模型表面风压分布的雷诺数效应[J]. 建筑结构学报, 2015, 36(1):143-149.

WANG Xinrong, GU Ming, QUAN Yong. Reynolds number effects on wind pressure distributions of 2D rectangular prisms in low turbulence flow [J]. Journal of Building Structures, 2015, 36(1): 143-149.

[15]王新荣, 顾明, 全涌. 二维矩形截面柱体气动力系数雷诺数效应[J].同济大学学报自然科学版, 2015, 43(4):498-505.

WANG Xinrong, GU Ming, QUAN Yong. Reynolds number effects on aerodynamic force coefficients of 2D rectangular prisms [J]. Journal of Tongji University (Nature Science), 2015, 43(4): 498-505.

[16]祝志文, 夏昌, 邓燕华. 钝体矩形断面绕流场机理与主分量分析[J].湖南大学学报(自科版),2012, 39(7):7-13.

ZHU Zhiwen, XIA Chang, DENG Yanhua. Flow mechanisms around bluff rectangular cylinders and its principle component analysis [J]. Journal of Hunan University (Nature Science), 2012, 39(7): 7-13.

[17]OTSUKI S, FUJII K, WASHIZU K, et al. Wind tunnel experiments on aerodynamic forces and pressure distributions of rectangular cylinders in a a uniform flow[C]// Proceedings of the Fifth Symposium on Wind Effects on Structures, 1978: 169-176.

[18]MIZOTA T, OKAJIMA A. Experimental studies of unsteady flows around rectangular prism [J]. Proceedings of the Japan Society of Civil Engineers,1981, 1981(312):49-57.

[19]TAMURA T, ITOH Y. Aerodynamic characteristics and flow structures around a rectangular cylinder with a section of various depth/breadth ratios [J]. Journal of Structural and Construction Engineering (Transactions of Architectural Institute of Japan), 1996:153-162.

[20]TAFTI D K, VANKA S P. A numerical study of flow separation and reattachment on a blunt plate[J]. Physics of Fluids, 1991, 3(12):2887-2909.

相似文献/References:

[1]宋战平,张丹锋,曲建生,等.承压富水砂土地层桩洞法施工变形控制研究[J].西安建筑科技大学学报(自然科学版),2015,47(01):33.[doi:10.15986/j.1006-7930.2015.01.007]
 SONG Zhanping,ZHANG Danfeng,QU Jiansheng,et al.Study on the deformation control of PBA construction method in pressure water sand stratum[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(01):33.[doi:10.15986/j.1006-7930.2015.01.007]
[2]李俊平,王红星,王晓光,等.岩爆倾向岩石巷帮钻孔爆破卸压的静态模拟[J].西安建筑科技大学学报(自然科学版),2015,47(01):97.[doi:10.15986/j.1006-7930.2015.01.019]
 LI Junping,WANG Hongxing,WANG Xiaoguang,et al.Static numerical simulation of drilling & blasting pressure relief of burst-prone rocks in tunnel wall[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(01):97.[doi:10.15986/j.1006-7930.2015.01.019]
[3]王 怡,樊 航,任晓芬.自由下落非均一粒径颗粒流的流场特性[J].西安建筑科技大学学报(自然科学版),2015,47(03):418.[doi:10.15986/j.1006-7930.2015.03.020]
 WANG Yi,FAN Hang,REN Xiaofen.Flow characteristics of free-fall particles with non-uniform particle diameter[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(01):418.[doi:10.15986/j.1006-7930.2015.03.020]
[4]吴耀鹏,白国良.直接空冷体系挡风墙体型系数研究[J].西安建筑科技大学学报(自然科学版),2014,46(06):805.[doi:10.15986/j.1006-7930.2014.06.007]
 WU Yaopeng,BAI Guoliang.Study on the shape factor of wind-break wall of direct air-cooled system[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(01):805.[doi:10.15986/j.1006-7930.2014.06.007]
[5]王 怡,疏艺波,黄艳秋,等.浮射流速度场和断面流量规律特性的研究[J].西安建筑科技大学学报(自然科学版),2014,46(06):839.[doi:10.15986/j.1006-7930.2014.06.013]
 WANG Yi,SHU Yibo,HUANG Yanqiu,et al.The study on the characteristics of velocity field and section flow rate of buoyant jet[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(01):839.[doi:10.15986/j.1006-7930.2014.06.013]
[6]张 薇,王文科,段 磊,等.增加河流生态基流的山间河谷型调蓄模式研究[J].西安建筑科技大学学报(自然科学版),2014,46(06):844.[doi:10.15986/j.1006-7930.2014.06.014]
 ZHANG Wei,WANG Wenke,DUAN Lei,et al.Study on the mountain valley storage mode to increase river ecological base flow to regulate model research[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(01):844.[doi:10.15986/j.1006-7930.2014.06.014]
[7]冯绍航,陈静平,陈延信,等.管道水流速对深层U型地热井采热影响的数值模拟研究[J].西安建筑科技大学学报(自然科学版),2012,44(04):586.[doi:10.15986/j.1006-7930.2012.04.024]
 FENG Shao-hang,CHEN Jing-ping,CHEN Yan-xin,et al.Numerical simulation study of the relation between water velocity and heat transfer in the deep geothermal well[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(01):586.[doi:10.15986/j.1006-7930.2012.04.024]
[8]郝际平,于金光,王先铁,等.半刚性节点钢框架-十字加劲钢板剪力墙结构的数值分析[J].西安建筑科技大学学报(自然科学版),2012,44(02):153.[doi:10.15986/j.1006-7930.2012.02.001]
 HAO Ji-ping,YU Jin-guang,WANG Xian-tie,et al.Numerical simulation of sheer walls of semi-rigid composite steel frame with stiffened steel plate[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(01):153.[doi:10.15986/j.1006-7930.2012.02.001]
[9]霍润科,周 锋,伦培元.四联拱浅埋暗挖隧道施工监测与数值分析[J].西安建筑科技大学学报(自然科学版),2013,45(03):330.[doi:10.15986/j.1006-7930.2013.03.005]
 HUO Run-ke,ZHOU Feng,LUN Pei-yuan.Numerical analysis and construction monitoring off our arch tunnel with shallow-buried excavation[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(01):330.[doi:10.15986/j.1006-7930.2013.03.005]
[10]李俊华,刘明哲,萧 寒.火灾后型钢混凝土梁剩余承载力数值模拟分析[J].西安建筑科技大学学报(自然科学版),2013,45(04):470.[doi:10.15986/j.1006-7930.2013.04.003]
 LI Jun-hua,LIU Ming- zhe,XIAO Han.Numerical simulating analysis for residual load bearing capacity of steel reinforced concrete beams after exposure to fire[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(01):470.[doi:10.15986/j.1006-7930.2013.04.003]

备注/Memo

备注/Memo:
收稿日期:2017-12-03
修改稿日期:2019-01-15
基金项目:国家自然科学基金项目(51578330)
第一作者:杜晓庆(1973-),男,副教授,博士,博导,主要从事结构风工程研究.E-mail: dxq@shu.edu.cn
通信作者:杜晓庆(1973-),男,副教授,博士,博导,主要从事结构风工程研究.E-mail: dxq@shu.edu.cn
更新日期/Last Update: 2019-03-05