[1]王 东,袁 帅,张森豪,等.动力固结问题的弱形式求积元分析[J].西安建筑科技大学学报(自然科学版),2020,(02):222-226.[doi:10.15986/j.1006-7930.2020.02.010]
 WANG Dong,YUAN Shuai,ZHANG Senhao,et al.Dynamic consolidation analysis by the weak form quadrature element method[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(02):222-226.[doi:10.15986/j.1006-7930.2020.02.010]
点击复制

动力固结问题的弱形式求积元分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2020年02期
页码:
222-226
栏目:
出版日期:
2020-04-25

文章信息/Info

Title:
Dynamic consolidation analysis by the weak form quadrature element method
文章编号:
1006-7930(2020)02-0222-05
作者:
王 东1袁 帅2张森豪2司晓东2周容名2
(1. 山西省交通规划勘察设计院有限公司,山西 太原 030032; 2. 长安大学 公路学院,陕西 西安 710064)
Author(s):
WANG Dong1 YUAN Shuai2 ZHANG Senhao2 SI Xiaodong2 ZHOU Rongming2
(1.The Communications Planning Surveying and Designing Institute of Shanxi Province, Taiyuan 030012, China; 2. School of Highway,Chang’an University, Xi’an 710064, China)
关键词:
弱形式求积元法 饱和土 Biot动力固结理论
Keywords:
the weak form quadrature element method saturated soils Biot’s theory of dynamic consolidation
分类号:
TU433
DOI:
10.15986/j.1006-7930.2020.02.010
文献标志码:
A
摘要:
弱形式求积元法是一种新型的高阶方法,已经在岩土及结构分析中取得了成功的应用,本文对该方法进行进一步的发展和完善,将其应用于饱和土动力固结分析.首先基于Biot饱和土波动理论框架,以孔隙水压力和土体骨架位移为基本控制变量,建立饱和土波动问题控制方程弱形式描述,然后应用Lobatto积分和微分求积法进行数值积分和数值微分并采用Newmark方法进行时域逐步积分,建立饱和土波动问题求积元法求解列式.通过数值算例验证了本文方法的正确性,显示了方法的计算效率
Abstract:
The weak form quadrature element method is a novel high order algorithm applied successfully in structural and geotechnical engineering. In the present study, it is reformulated for dynamic consolidation analysis of saturated soils. Based on Biot’s theory of dynamic consolidation, the pore pressure and soil displacement are chosen to be the control variables to establish the weak form governing equations. Then the Lobatto integration rule and the differential quadrature method are employed respectively to numerically integrate and differentiate the weak form governing equations, and the Newmark scheme is used for time integration. The established formulation is verified by numerical examples and its efficiency is highlighted

参考文献/References:

[1] 徐洋, 谢康和, 卢廷浩. 二灰土桩复合地基三维固结有限元分析[J]. 岩土工程学报, 2002, 24(2):254-256.
XU Y, XIE K H, LU T H. Consolidation analysis of composite ground with lime-flyash columns by 3D FEM [J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2):254-256.
[2] 王刚, 张建民. 波浪作用下某防沙堤的动力固结有限元分析[J]. 岩土力学, 2006, 27(4):555-560.
WANG G, ZHANG J M. Dynamic consolidation finite element analysis of a sediment-protecting dyke under ocean wave loading [J]. Rock and Soil Mechanics, 2006, 27(4):555-560.
[3] 林丰, 陈环. 真空和堆载作用了砂井地基固结的边界元分析[J]. 岩土工程学报, 1987, 9(4):13-22.
LIN F, CHEN H. Consolidation analysis of sand drains foundation subject to vacuum combined surcharging preloading by boundary element method[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(4):13-22.
[4] 欧贵宝, 饶意忠, 周博. 土体固结问题的一种边界元解法[J]. 哈尔滨工程大学学报, 2002, 23(6):39-42.
OU B G, RAO Y Z, ZHOU B. Solution of soil-body concretion by boundary element method [J]. Journal of Harbin Engineering University, 2002, 23(6):39-42.
[5] WANG W, WANG J, WANG Z, et al. An unequal-order radial interpolation meshless method for Biot’s consolidation theory[J]. Computers and Geotechnics, 2007, 34(2):61-70.
[6] 李冰河, 王奎华. 软粘土非线性一维固结有限差分法分析[J]. 浙江大学学报(工学版), 2000, 34(4):376-381.
LI B H, WANG K H. One-dimensional nonlinear consolidation analysis of soft clay by the finite difference method[J]. Journal of Zhejiang University(Engineering Science), 2000, 34(4):376-381.
[7] CHEN R, ZHOU W, WANG H, et al. One-dimensional nonlinear consolidation of multi-layered soil by differential quadrature method[J]. Computers and Geotechnics, 2005, 32(5):358-369.
[8] ZHENG G Y, LI P, ZHAO C Y. Analysis of non-linear consolidation of soft clay by differential quadrature method[J]. Applied Clay Science, 2013, 79:2-7.
[9] ZHONG H Z, YUE Z G. Analysis of thin plates by the weak form quadrature element method[J]. Science China Physics Mechanics & Astronomy, 2012, 55(5):861-871.
[10]HE R, ZHONG H. Large deflection elasto-plastic analysis of frames using the weak-form quadrature element method[J]. Finite Elements in Analysis & Design, 2012, 50(1):125-133.
[11]SHUAI Y, ZHONG H. Consolidation analysis of non-homogeneous soil by the weak form quadrature element method[J]. Computers & Geotechnics, 2014, 62:1-10.
[12]SHUAI Y, ZHONG H. Three dimensional analysis of unconfined seepage in earth dams by the weak form quadrature element method[J]. Journal of Hydrology, 2016, 533:403-411.
[13]BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The Journal of the acoustical Society of america, 1956, 28(2): 179-191.

备注/Memo

备注/Memo:
收稿日期:2019-01-21 修改稿日期:2020-03-25
基金项目:陕西省自然科学基础研究计划基金资助(2018JQ5098)
第一作者:王 东(1982-),男,高级工程师,主要从事工程设计及计算研究.E-mail: 94794161@qq.com
更新日期/Last Update: 2020-04-25