[1]黄道军,薛睿康,李 凯,等.浅层滞缓流水体富营养化成因与防控策略[J].西安建筑科技大学学报(自然科学版),2020,(04):514-519.[doi:10.15986-j.1006-7930.2020.04.007]
 HUANG Daojun,XUE Ruikang,LI Kai,et al.Eutrophication and algae bloom in shallow stagnant water bodies: Causes and control strategies[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(04):514-519.[doi:10.15986-j.1006-7930.2020.04.007]





Eutrophication and algae bloom in shallow stagnant water bodies: Causes and control strategies
黄道军1薛睿康2李 凯2许 明1李永超1慕佳佳1黄廷林2
(1.陕西西咸新区水务集团有限公司,陕西 西安 712000; 2.西安建筑科技大学 陕西省环境工程重点实验室,陕西 西安 710055)
HUANG Daojun1XUE Ruikang2LI Kai2XU Ming1LI Yongchao1MU Jiajia1HUANG Tinglin2
(1. Shaanxi Xixian New Area Water Group Co. Ltd.,Xi’an 712000,China; 2. Shaanxi Key Laboratory of Environmental Engineering,Xi’an Univ. of Arch. & Tech.,Xi’an 710055,China)
浅层滞缓流水体 富营养化 藻类爆发 营养盐削减 控藻
shallow stagnant water eutrophication algal bloom reduction of nutrient algae control
Shallow stagnant water bodies refer to shallow lakes, reservoirs and landscape water bodies in which the water flow rate is slow and the hydraulic retention time is long. These shallow stagnant waters are characterized by poor hydrodynamic condition, weak self-purification capability, sufficient sunlight and high temperature in summer and autumn in all depth. Moreover, wind-induced mixing tends to promote release of nutrients from sediments. Therefore, algae blooms are prone to occur in these shallow stagnant waters under appropriate meteorological condition, which would impose a serious impact on urban environment and people’s health. Based on the hydraulic characteristics of shallow stagnant water bodies, this paper analyzes the cause of water quality deterioration and common techniques for remediation of these water bodies. A prevention and control strategy of the combination of nutrients reduction and algae control is proposed, and future research directions are highlighted.


[1] 中华人民共和国水利部编. 中国水利统计年鉴2019 [M]. 北京: 中国水利水电出版社, 2019.
Ministry of Water Resources of the People’s Republic of China. China statistical yearbook of water resources of 2019 [M]. Beijing: China Water Power Press,2019.
[2] 黄廷林. 水源水库水质污染原位控制与改善是饮用水水质安全保障的首要前提[J]. 给水排水,2017,43(1): 1-3,69.
HUANG Tinglin. In-situ control and improvement of water pollution in source reservoirs is the primary prerequisite for the safety of drinking water quality[J]. Water & Wastewater Engineering, 2017, 43(1): 1-3, 69.
[3] BROOKS BRYAN W, LAZORCHAK JAMES M, HOWARD MEREDITH D A, et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?[J]. Environmental Toxicology and Chemistry, 2016, 35(1): 6-13.
[4] LE C, ZHA Y, LI Y, et al. Eutrophication of lake waters in China: Cost, causes, and control[J]. Environmental Management, 2010, 45(4): 662-668.
[5] 秦伯强,杨柳燕,陈非洲,等. 湖泊富营养化发生机制与控制技术及其应用[J]. 科学通报, 2006, 51(16): 1857-1866.
QIN Boqiang, YANG Liuyan, CHEN Feizhou,et al. Mechanism and control technology of lake eutrophication and its application[J]. Chinese Science Bulletin,2006,51(16): 1857-1866.
[6] ZAN Fengyu,HUO Shouliang,XI Beidou,et al. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China[J]. Journal of Environmental Monitoring,2012, 14(3): 804-816.
[7] WANG Jianjian,PANG Yong,LI Yiping,et al. Experimental study of wind-induced sediment suspension and nutrient release in Meiliang Bay of lake Taihu, China[J]. Environmental Science and Pollution Research, 2015, 22(14): 10471-10479.
[8] 梁培瑜,王,马芳冰. 水动力条件对水体富营养化的影响[J]. 湖泊科学, 2013, 25(4): 455-462.
LIANG Peiyu, WANG Xuan, MA Fangbing. Effect of hydrodynamic conditions on water eutrophication:A review[J]. Journal of Lake Science,2015,22(14): 10471-10479.
[9] 黄鹏, 田腾飞, 张文安, 等. 水动力条件对水体中藻类生长的抑制作用[J]. 环境工程, 2018, 36(12): 64-69.
HUANG Peng, TIAN Tengfei, ZHANG Wenan, et al. Inhibition of algae growth in water by hydroynamic force[J]. Environmental Engineering, 2018, 36(12): 64-69.
[10]QU Jiuhui, WANG Hongchen, WANG Kaijun, et al. Municipal wastewater treatment in China: Development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6): 1-7.
[11]LIU Xuejun, ZHANG Ying, HAN Wenxuan, et al. Enhanced nitrogen deposition over China[J]. Nature,2013, 494(7438): 459-462.
[12]ZHU Jianxing, HE Nianpeng, WANG Qiufeng, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J]. Science of The Total Environment, 2015, 511(511): 777-785.
[13]牛勇, 牛远, 王琳杰, 等. 2009-2018年太湖大气湿沉降氮磷特征对比研究[J]. 环境科学研究, 2020, 33(1): 122-129.
NIU Yong, NIU Yuan, WANG Linjie, et al. Comparative study on nitrogen and phosphorus characteristics of atmospheric wet deposition in Lake Taihu from 2009 to 2018[J]. Research of Environmental Sciences, 2020, 33(1): 122-129.
[14]侯培强, 王效科, 郑飞翔, 等. 我国城市面源污染特征的研究现状[J]. 给水排水, 2009, 45(S1): 188-193.
HOU Peiqiang, QANG Xiaoke, ZHENG Feixiang, et al. Study status of the characteristics of urban non-point source pollution in China[J]. Water & Wastewater Engineering, 2009, 45(S1): 188-193.
[15]全为民, 严力蛟. 农业面源污染对水体富营养化的影响及其防治措施[J]. 生态学报, 2002, 22(3): 291-299.
QUAN Weimin, YAN Lijiao. Effects of agricultural non-point source pollution on eutrophication of water body and its control measure[J]. Acta Ecologica Sinica, 2002, 22(3): 291-299.
[16]HUANG Tinglin. Water pollution and water quality control of selected Chinese reservoir basins[M]. Germany: The Handbook of Environment Chenistry, 2015: 109-115.
[17]李安峰, 杨冲, 胡翔, 等. 北京奥林匹克公园龙形水系底泥氮磷释放实验研究[J]. 环境工程, 2013, 31(4): 40-44, 47.
LI Anfeng, YANG Chong, HU Xiang, et al. Experiments of nitrogen and phosphorus release of sediment in dragon-shaped water system of Beijing olympic park[J]. Environmental Engineering, 2013, 31(4): 40-44, 47.
[18]石文平, 朱佳, 张朝升, 等. 水库浅水区底泥营养物质释放与藻类生长关系研究[J]. 环境工程, 2015, 33(5): 75-80.
SHI Wenping, ZHU Jia, ZHANG Chaosheng, et al. Relationship between sediment nutrient release and algae growth in the shallow area of the reservoir[J]. Environmental Engineering, 2015, 33(5): 75-80.
[19]YAN Xingcheng, XU Xiaoguang, WANG Mingyue, et al. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective[J]. Water Research, 2017, 125: 449-457.
[20]尚丽霞, 柯凡, 李文朝, 等. 高密度蓝藻厌氧分解过程与污染物释放实验研究[J]. 湖泊科学, 2013,(1): 47-54.
SHANG Lixia, KE Fan, LI Wenchao, et al. Laboratory study on the contaminants release during the anaerobic decomposition of high-density cyanobacteria[J]. Journal of Lake Science, 2013,25(1): 47-54.
[21]李平, 王晟. 生物滞留技术控制城市面源污染的作用与机理[J]. 环境工程, 2014, 32(3): 75-79.
LI Ping, WANG Sheng, Effect and mechanism of bioretention technology for urban non-point source pollutions contral[J]. Environmental Engineering, 2014, 32(3): 75-79.
[22]曾思育, 董欣. 城市降雨径流污染控制技术的发展与实践[J]. 给水排水, 2015, 51(10): 1-3.
ZENG Siyu, DONG Xing. Development and practice of urban rainfall runoff pollution control technology[J]. Water&Wastewater Engineering, 2015, 51(10): 1-3.
[23]杨林章, 吴永红. 农业面源污染防控与水环境保护[J]. 中国科学院院刊, 2018, 33(2): 168-176.
YANG Linzhang, WU Yonghong. Prevention and control of agricultural non-point source pollution and aquatic environmental protection[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 168-176.
[24]CHEN Rong, AO Dong, JI Jiayuan, et al. Insight into the risk of replenishing urban landscape ponds with reclaimed wastewater[J]. Journal of Hazardous Material, 2017, 324(Pt B): 573-582.
[25]刘轩, 陈荣, 雷振, 等. 再生水补水条件下底泥对藻类生长影响作用[J]. 环境工程, 2018, 36(7): 37-41.
LIU Xuan, CHEN Rong, LEI Zhen, et al. Effect of sediment on the growth of algae under recycled water supplement conditions[J]. Environmental Engineering, 2018, 36(7): 37-41.
[26]秦桂海. 改良AAO/MBR/RO工艺用于半地下式污水厂工程设计[J]. 中国给水排水, 2018, 34(12): 46-49.
QIN Guihai. Project design of improved AAO/MBR/RO process in semi-underground wastewater treatment plant[J]. China Water & Wastewater, 2018, 34(12): 46-49.
[27]王敬富, 陈敬安, 孙清清, 等. 底泥疏浚对阿哈水库内源污染的影响[J]. 环境工程, 2018, 36(3): 69-73, 147.
WANG Jingfu, CHEN Jingan, et al. Effect of dredging of the sediment pollution in AHA reserboir[J]. Environmental Engineering, 2018, 36(3): 69-73, 147.
[28]陆子川. 湖泊底泥挖掘可能导致水体氮磷平衡破坏的研究[J]. 中国环境监测, 2001, 17(2): 40-42.
LU Zichuan. Study on digging up the lake sediments which may lead to destroying the blance of nitrogen and phosphorus in water[J]. Environmental Monitoring of China, 2001, 17(2): 40-42.
[29]薄涛, 季民. 内源污染控制技术研究进展[J]. 生态环境学报, 2017, 26(3): 514-521.
BO Tao, JI Min. Study progress of endogenous pollution control technology[J]. Ecology and Environmental Science, 2017, 26(3): 514-521.
[30]郭, 赵秀红, 黄晓峰, 等. 原位活性覆盖抑制河道底泥营养盐释放的效果研究及工程化应用[J]. 环境工程, 2018, 36(6): 6-11.
GUO Yun, ZHAO Xiuhong, HUANG Xiaofeng, et al. Study on in-situ active capping for eutrophic sediment nutrients control in river and its engineering application[J]. Environmental Engineering, 2018, 36(6): 6-11.
[31]纪荣平,吕锡武,李先宁. 人工介质对富营养化水体中氮磷营养物质去除特性研究[J]. 湖泊科学, 2007, 19(1): 39-45.
JI Rongping, LU Xiwu, LI Xianning. Performance of artificial medium for removing nutrients in eutrophic water[J]. Journal of Lake Science, 2007, 19(1): 39-45.
[32]MARCHANT H K, AHMERKAMP S, LAVIK G, et al.Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously[J]. The ISME journal, 2017, 11(8): 1799-1812.
[33]WEN Gang, WANG Tong, LI Kai,et al. Aerobic denitrification performance of strain Acinetobacter johnsonii WGX-9 using different natural organic matter as carbon source: Effect of molecular weight [J]. Water Research, 2019, 164.
[34]ZHANG Haihan, ZHAO Zhenfang, KANG Pengliang, et al. Biological nitrogen removal and metabolic characteristics of a novel aerobic denitrifying fungus Hanseniaspora uvarum strain KPL108[J]. Bioresource Technology, 2018, 267: 569-577.
[35]陈雪初, 孙扬才, 曾晓文, 等. 低光照度对源水中铜绿微囊藻增殖的抑制作用[J]. 中国环境科学,2007,(3): 352-355.
CHEN Xuechu, SUN Yangcai, ZENG Xiaowen, et al. The inhibition of low light intensity on the growth of microcystis aeruginosa in raw water[J]. China Environment Science, 2007, 27(3): 352-355.
[36]RODRIGUEZ-MOLARES A, DICKSON S, HOBSON P,et al. Quantification of the ultrasound induced sedimentation of microcystis aeruginosa [J]. Ultrasonics Sonochemistry, 2014, 21(4): 1299-1304.
[37]黄廷林, 胡瑞柱, 丛海兵. 一种无动力投药与混合式深井增压强化控藻水处理设备,中国,CN106348357B [P/OL]. 2019-06-11.
HUANG Tinglin, HU Ruizhu, CONG Haibing. A water treatment equipment composed of non-power dosing and deep well circulation with static mixer for algal control, CN106348357B [P/OL]. 2019-06-11.
[38]CONG Haibing, SUN Feng, WU Jun,et al. Study on method and mechanism of deep well circulation for the growth control of microcystis in aquaculture pond [J]. Water Science and Technology, 2017, 75(11): 2692-2701.
[39]王红强,李宝宏,张东令,等. 藻类的生物控制技术研究进展[J]. 安全与环境工程, 2013, 20(5): 38-41.
WANG Hongqiang, LI Baohong, ZHANG Dongling, et al. Research advance in biological techniques for controlling algae growth[J]. Safety and Environment Engineering, 2013, 20(5): 38-41.
[40]黄廷林,胡瑞柱. 一种高效固液分离的循环造粒流化床,中国,CN208327492U [P/OL]. 2019-01-04.
HUANG Tinglin, HU Ruizhu. A circulating granulator fluidized bed for high efficiency solid-liquid separation, CN106348357B [P/OL]. 2019-06-11.


收稿日期:2020-03-31 修改稿日期:2020-07-15
更新日期/Last Update: 2020-09-25