[1]于金海.钢渣 - 水泥注浆加固全强风化花岗岩试验研究[J].西安建筑科技大学学报(自然科学版),2020,(04):528-536.[doi:10.15986-j.1006-7930.2020.04.009]
 YU Jinhai.Study on strongly-fully weathered granite reinforced by steel slag cement grouting[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,(04):528-536.[doi:10.15986-j.1006-7930.2020.04.009]
点击复制

钢渣 - 水泥注浆加固全强风化花岗岩试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2020年04期
页码:
528-536
栏目:
出版日期:
2020-09-25

文章信息/Info

Title:
Study on strongly-fully weathered granite reinforced by steel slag cement grouting
文章编号:
1006-7930(2020)04-0528-09
作者:
于金海
(成都农业科技职业学院 城乡建设学院,四川 成都 611130)
Author(s):
YU Jinhai
(School of Urban and Rural Construction, Chengdu Vocational College of Agricultural Science and Technology, Chengdu 611130,China)
关键词:
钢渣 - 水泥浆液 注浆加固 抗压强度 扩散半径 渗透系数
Keywords:
Steel slag cement slurry grouting reinforcement compressive strength diffusion radius permeability coefficient
分类号:
U451.5
DOI:
10.15986-j.1006-7930.2020.04.009
文献标志码:
A
摘要:
为研究钢渣 - 水泥浆液对全强风化花岗岩的注浆效果,采用了不同水灰比、不同钢渣含量的浆液对全风化花岗岩进行注浆试验,测定了浆液凝结时间、浆液扩散半径,结石体单轴抗压强度,渗透系数的变化曲线,初步确定了注浆效果较好的水灰比与钢渣含量范围.后采用PFC离散元软件对实际隧道掌子面进行数值模拟,进一步评价钢渣 - 水泥对全风化花岗岩的注浆加固效果,分析最优水灰比与钢渣含量.结果表明:浆液扩散半径随着钢渣含量上升而减小,当浆液水灰比≥1时,浆液扩散半径减小幅度不超过6%; 钢渣含量与水灰比,共同影响全风化花岗岩结石体的抗压强度,当水灰比<1时,钢渣含量上升,结石体抗压强度先上升后减小,当水灰比≥1时,钢渣含量上升,结石体抗压强度不断升高但速率减慢; 结石体的渗透系数随着钢渣含量上升,先增大而后减小,且水灰比越小,下降越明显; 全风化花岗岩地层隧道超前加固中,采用水灰比1:1,钢渣含量为6% 钢渣 - 水泥浆液进行注浆,掌子面的稳定性可以得到有效保障,研究成果可为类似全风化花岗岩地层的注浆加固工程提供指导.
Abstract:
In order to study the grouting effect of steel slag cement slurry on completely weathered granite, grouting tests were carried out on completely weathered granite with different water cement ratio and steel slag content. The variation curves of grout setting time, slurry diffusion radius, uniaxial compressive strength and permeability coefficient were measured. The range of water cement ratio and steel slag content with better grouting effect was preliminarily determined. After that, PFC discrete element software is used to simulate the actual tunnel face, further evaluate the grouting reinforcement effect of steel slag cement on completely weathered granite, and analyze the optimal water cement ratio and steel slag content. Results show that: the slurry diffusion radius decreases with the increase of steel slag content. When the water cement ratio of slurry is greater than or equal to 1, the decrease range of slurry diffusion radius is not more than 6%; the steel slag content and water cement ratio jointly affect the compressive strength of completely weathered granite stone body. When the water cement ratio is less than 1, the steel slag content increases, and the compressive strength of the stone body increases first and then decreases With the increase of steel slag content, the permeability coefficient of stone body first increases and then decreases, and the smaller the water cement ratio, the more obvious the decrease; in the advanced reinforcement of tunnel in completely weathered granite stratum, the water cement ratio is 1:1, and the steel slag content is 6%. The stability of tunnel face can be effectively guaranteed by grouting with steel slag cement slurry. The research results can provide guidance for grouting reinforcement projects similar to completely weathered granite stratum.

参考文献/References:

[1] 李炳元, 潘保田, 程维明,等. 中国地貌区划新论[J]. 地理学报, 2013, 68(3):5-10.
LI Bingyuan, PAN Baotian, CHENG Weiming, et al. A new theory of geomorphological zoning in China[J]. Acta Geographica Sinica, 2013, 68(3): 5-10.
[2] 尚彦军, 史永跃, 金维俊,等. 花岗岩风化壳分带与岩体基本质量分级关系探讨[J]. 岩石力学与工程学报, 2008, 27(9):1858-1858.
SHANG Yanjun, SHI Yongyue, JIN Weijun, et al. Discussion on relationship between zoning of granite weathering crust and basic quality classification of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9):1858-1858.
[3] 陈卫忠, 于洪丹, 郭小红,等. 厦门海底隧道海域风化槽段围岩稳定性研究[J]. 岩石力学与工程学报, 2008, 27(5):873-884.
CHEN Weizhong, YU Hongdan, GUO Xiaohong, et al. Study on the surrounding rock stability of the weathering trough section of the Xiamen subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5):873-884.
[4] 张素敏, 朱永全, 高炎,等. 全风化花岗岩流变特性试验研究[J]. 地下空间与工程学报, 2016, 12(4):904-911.
ZHANG Sumin, ZHU Yongquan, GAO Yan, et al. Experimental study on the rheological properties of fully weathered granite[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 904-911.
[5] 于洪丹, 陈卫忠, 郭小红,等. 厦门海底隧道强风化花岗岩力学特性研究[J]. 岩石力学与工程学报, 2010, 29(2):381-387.
YU Hongdan, CHEN Weizhong, GUO Xiaohong, et al. Study on the mechanical properties of the highly weathered granite in Xiamen subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2):381-387.
[6] 袁敬强, 陈卫忠, 黄世武,等. 全强风化花岗岩隧道突水灾害机制与协同治理技术研究[J]. 岩石力学与工程学报, 2016(A2):4164-4171.
YUAN Jingqiang, CHEN Weizhong, HUANG Shiwu, et al. Research on the mechanism of water inrush disaster of fully weathered granite tunnel and collaborative treatment technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2016(A2):4164-4171.
[7] 李术才, 张伟杰, 张庆松, 等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学, 2014(3):744-752.
LI Shucai, ZHANG Weijie, ZHANG Qingsong, et al. Research on dominant splitting grouting mechanism and grouting control method in water-rich fracture zone[J]. Rock and Soil Mechanics, 2014(3):744-752.
[8] 黄群伟. 全强风化花岗岩地层深埋隧道围岩分级方法及施工关键技术研究[D].成都:西南交通大学,2019.
HUANG Qunwei. Research on the classification method and construction key technology of deep tunnel surrounding rock in fully weathered granite stratum[D].Chengdu:Southwest Jiaotong University, 2019.
[9] 高健, 张义同. 实施超前注浆管棚支护的隧道开挖面稳定分析[J]. 天津大学学报, 2009, 42(8):666-672.
GAO Jian, ZHANG Yitong. Stability analysis of tunnel excavation surface with advanced grouting pipe roof support[J]. Journal of Tianjin University, 2009, 42(8):666-672.
[10]李术才, 张霄, 张庆松, 等. 地下工程涌突水注浆止水浆液扩散机制和封堵方法研究[J]. 岩石力学与工程学报, 2011, 30(12):2377-2396.
LI Shucai, ZHANG Xiao, ZHANG Qingsong, et al. Research on grout diffusion mechanism and plugging method of water inrush grouting and water stop in underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2377-2396.
[11]张民庆,彭峰. 地下工程注浆技术[M]. 北京:地质出版社,2008.
ZHANG Minqing, PENG Feng. Grouting technology for underground engineering[M]. Beijing: Geological Publishing House, 2008.
[12]卢书明, 黄建生, 余东华, 等. 双液注浆技术在强风化花岗岩地层中的应用[J]. 中国港湾建设, 2017(8):89-91.
LU Shuming, HUANG Jiansheng, YU Donghua, et al. Application of two-fluid grouting technology in strongly weathered granite formations[J]. China Harbor Construction, 2017(8):89-91.
[13]梁炯.锚固与注浆技术手册[M].北京:中国电力出版社,1999.
LIANG Jiongjun. Anchorage and grouting technology manual[M]. Beijing: China Electric Power Press, 1999.
[14]杨晓华, 俞永华. 水泥—水玻璃双液注浆在黄土隧道施工中的应用[J]. 中国公路学报, 2004, 17(2):68-72.
YANG Xiaohua, YU Yonghua. Application of cement-water glass double-liquid grouting in loess tunnel construction[J]. China Journal of Highway and Transport, 2004, 17(2):68-72.
[15]童立元, 潘石, 邱钰,等. 大掺量粉煤灰注浆充填材料试验研究[J]. 东南大学学报(自然科学版), 2002, 32(4):643-647.
TONG Liyuan, PAN Shi, QIU Yu, et al. Experimental research on grouting filling material with large amount of fly ash[J]. Journal of Southeast University(Natural Science Edition), 2002, 32(4):643-647.
[16]宋雪飞. 粉煤灰改性水泥 - 水玻璃双液注浆性能试验研究[J]. 煤炭科学技术, 2014, 42(1):143-145.
SONG Xuefei. Experimental study on the performance of fly ash modified cement-water glass double-liquid grouting[J]. Coal Science and Technology, 2014, 42(1):143-145.
[17]曹忠, 江宁, 江兴元, 等. 矸石膏体充填材料物化特性与配比试验研究[J]. 煤矿安全, 2013, 44(4):68-71.
CAO Zhong, JIANG Ning, JIANG Xingyuan, et al. Experimental study on physicochemical properties and ratio of gangue gypsum body filling materials[J]. Coal Mine Safety, 2013, 44(4): 68-71.
[18]黄磊, 姚晓, 孟佳佳,等. 富镁矿渣 - 水泥复合注浆材料的制备及性能研究[J]. 硅酸盐通报, 2014, 33(3):482-486.
HUANG Lei, YAO Xiao, MENG Jiajia, et al. Preparation and performance of magnesium-rich slag-cement composite grouting material[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3):482-486.
[19]谷天峰,孙忠弟,骆凤涛,等. 水泥 - 黄土注浆充填材料的试验研究[J]. 工程地质学报, 2014, 22(1):98-105.
GU Tianfeng, SUN Zhongdi, LUO Fengtao, et al. Experimental study on cement-loess grouting filling materials[J]. Journal of Engineering Geology, 2014, 22(1): 98-105.
[20]SHEKARCHI M, BONAKDAR A, BAKHSHI M, et al. Transport properties in metakaolin blended concrete[J]. Construction & Building Materials, 2010, 24(11):2217-2223.
[21]刘祥友, 翟国林, 方云,等. 龙门石窟岩体裂隙防渗注浆机制及参数分析[J]. 岩石力学与工程学报, 2014, 33(s2):3941-3947.
LIU Xiangyou, ZHAI Guolin, FANG Yun, et al. The mechanism and parameter analysis of anti-seepage grouting for rock mass fractures in Longmen Grottoes[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(s2):3941-3947.
[22]胡曙光, 王红喜, 张高展,等. 工业废渣注浆材料的抗溶蚀性能[J]. 硅酸盐学报, 2007, 35(4):472-477.
HU Shuguang, WANG Hongxi, ZHANG Gaozhan, et al. The corrosion resistance of industrial waste slag grouting materials[J]. Journal of The Chinese Ceramic Society, 2007, 35(4):472-477.
[23]张义顺, 吴杰, 郭乾坤,等. 钢渣双液注浆材料的研究[J]. 河南理工大学学报(自然科学版), 2011, 30(3):346-349.
ZHANG Yishun, WU Jie, GUO Qiankun, et al. Research on two-liquid grouting material for steel slag[J]. Journal of Henan Polytechnic University(Natural Science Edition), 2011, 30(3): 346-349.

备注/Memo

备注/Memo:
收稿日期:2019-09-30 修改稿日期:2020-07-10
资金项目:重庆市应用开发计划重点基金资助项目(cstc2014yykfb30003)
第一作者:于金海(1985-),男,讲师,硕士,主要从事土木工程施工与项目管理. E-mail:1563927406@qq.com
更新日期/Last Update: 2020-09-25