[1]胡 杨,郭通达,龙万学,等.基于BOTDA分布式光纤传感技术的双排圆形桩变形特性及内力研究[J].西安建筑科技大学学报(自然科学版),2021,(05):692-699.[doi:10.15986/j.1006-7930.2021.05.011 ]
 HU Yang,GUO Tongda,LONG Wanxue,et al.Research on deformation characteristics and internal forces of double-row circular piles based on BOTDA distributed optical fiber sensing technology[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,(05):692-699.[doi:10.15986/j.1006-7930.2021.05.011 ]
点击复制

基于BOTDA分布式光纤传感技术的双排圆形桩变形特性及内力研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
期数:
2021年05期
页码:
692-699
栏目:
出版日期:
2021-10-25

文章信息/Info

Title:
Research on deformation characteristics and internal forces of double-row circular piles based on BOTDA distributed optical fiber sensing technology
文章编号:
1006-7930(2021)05-0692-08
作者:
胡 杨1郭通达1龙万学2姜 波2何 健2
(1.贵阳市城市轨道交通集团有限公司,贵州 贵阳 550081; 2.贵州省交通规划勘察设计研究院股份有限公司,贵州 贵阳 550001)
Author(s):
HU Yang1GUO Tongda1LONG Wanxue2JIANG Bo2HE Jian2
(1.Guiyang Urban Rail Transit Group Co.Ltd., Guiyang 50081,China; 2.Guizhou Transportation Planning Survey and Design Academe Co.,Ltd., Guiyang 550001,China)
关键词:
双排圆形桩 分布式光纤传感技术 应变 内力分析
Keywords:
double-row circular piles BOTDA strain internal force analysis
分类号:
U445.55
DOI:
10.15986/j.1006-7930.2021.05.011
文献标志码:
A
摘要:
为了解双排圆形桩在基坑支护中的变形规律和内力分布特性,结合BOTDA分布式光纤传感技术和深层位移监测技术对双排桩在基坑开挖过程中的变形及内力响应进行测试.通过在前、后排桩分别布设传感光缆,采集了从基坑开挖过程到稳定后的应变对双排桩的变形特性及内力,并引入数值模拟与之对比分析.研究结果表明:光纤监测推算的桩身扰度与相应位置的测斜监测的桩身侧向位移曲线规律基本一致,基坑整体变形较小且处于稳定状态,双排圆形桩起到了很好的支护效果; 通过监测应变能真实反映桩身内力分布及传递规律,对比数值模拟成果,双排桩实测弯矩剪力值明显小于模拟值,分布规律基本一致,在前、后排桩上的系梁连接点及坑底以下2 m附近的弯矩较大,后排桩分担的荷载大于前排桩的; 基坑开挖完成后,坑底以上土压力的分布形式呈现“上下部小,中部大”的中凸特征,实测土压力值也小于经典土压力法理论计算值.
Abstract:
In order to understand the deformation laws and internal force distribution characteristics of the double-row circular piles in the foundation pit support, the deformation and internal force response of double-row piles in the process of foundation pit excavation are tested by means of BOTDA distributed optical fiber sensing technology and deep displacement monitoring technology. By laying sensing optical cables in the front and rear piles respectively, the strain from the excavation process to the stability of the foundation pit is collected to study the deformation characteristics and internal forces of the double-row piles, and the numerical simulation is introduced for comparative analysis. The result shows that the pile disturbance calculated by the optical fiber monitoring is basically consistent with the pile lateral displacement curve of the corresponding position inclination monitoring. The overall deformation of the foundation pit is small and in a stable state, and the double-row circular piles have a good supporting effect. By monitoring the strain energy, the internal force distribution and transfer law of the pile body are truly reflected. Compared with the numerical simulation results, the measured bending moment and shear force values of the double-row piles are significantly smaller than the simulated values, and the distribution law is basically the same. The bending moment at the connecting point of the tie beams on the front and rear piles and near 2m below the bottom of the pit is larger, and the load shared by the rear piles is greater than that of the front piles. After the excavation of the foundation pit is completed, the distribution of earth pressure above the bottom of the pit shows a convex characteristic of "small in upper and lower parts and large in middle parts". The measured earth pressure value is also less than the theoretical value calculated by classical earth pressure method.

参考文献/References:

[1] 郑颖人,陈祖煜,王恭先,等.边坡与滑坡工程治理[M].北京:人民交通出版社,2007:394-397.
ZHEN Yingren,CHEN Zuyu,WANG Gongxian. Engineering treatment of slope & landslide[M]. Beijing: China Communications Press,2007:394-397.
[2]熊治文等.全埋式双排抗滑桩的受力分布[J].路基工程,2002,3:5-11.
XIONG Zhiwen.Forcing distribution of buried double row antislid piles[J].Subgrade Engineering, 2002,3:5-11.
[3]罗刚.大直径圆形抗滑桩受力机理及施工技术[J].工程技术研究.2020,5(11):64-65.
LUO Gang.The mechanical mechanism and construction technology of large-diameter circular anti-slide piles[J].Metallurgical Collections.2020, 5(11):64-65.
[4]郑刚,朱晓蔚,程雪松,等.悬臂排桩支护基坑连续破坏控制理论及设计方法研究[J].岩土工程学报.2021,43(6):981-990.
ZHENG Gang, ZHU Xiaowei, CHENG Xuesong,et al.Study on the control theory and design method of progressive collapse in excavations retained by cantilever piles[J].Chinese Journal of Geotechnical Engineering.2021,43(6):981-990.
[5]索文斌,程刚,卢毅,等.深基坑支护桩布里渊光时域分布式监测方法研究[J]. 高校地质学报. 2016,22(4):724-732.
SUO Wenbin, CHENG Gang, LU Yi, et al. Study on distributed monitoring method of deep foundation pit retaining pile based on the brillouin optical time domain technology[J].Geological Journal of China Universities, 2016,22(4):724-732).
[6]RAVET F, BAO X, ZOU L, et al. Accurate strain detection and localization with the distributed Brillouin sensor based on a phenomenological signal processing approach[D] // 13th International Symposium on Smart Structures and Materials and NDE for Health Monitoring and Diagnostics. San Diego, California, United States: SPIE, 2006.
[7]BILLINGTON R. Measurement methods for stimulat-ed raman and brillouin scattering in optical fibres, USA[R]. NPL Report COEM 31. UK: NPL,1999.
[8]THEVENAZ L, NIKLE M, FELLAY A, et a1. Truly distributed strain and temperature sensing using embedded optical fibets[C]//SPIE 5th Annual international symposium on smart structures and materials. 1998,San Diego, California, United States: SPIE,1998.
[9]WAIT P C, NEWSON T P. Measurement of Brillouin scattering coherence length as a function of pump power to determine Brillouin 1ine width[J]. Opties Communications, 1995, 117(1/2): 142-146.
[10]COTTER D. Observation of stimulated Brillouin scattering in low loss silica fibre at 1.33 μm[J]. Electronics. Letters,1982, 18(12): 495-496.
[11]罗勇,姜波,李淳风,等.h型抗滑桩滑坡治理中的变形特性及内力研究[J].地下空间与工程学报. 2017,13(6):1702-1710.
LUO Yong JIANG Bo, LI Chunfeng, et al.Research on the deformation and internal force characteristics of h-type antislide piles in landslide treatment[J].Chinese Journal of Underground Space and Engineering,2017, 13(6):1702-1710.
[12]高俊启,施斌,张巍,等.BOTDR检测钢筋混凝土梁分布式应变的试验研究[J].土木工程学报,2005,38,(9):74-79.
GAO Junqi, SHI Bing, ZHANG Wei, et al. An experimental study for measuring the distributed strain ofreinforced concrete beam using BOTDR[J]. China Civil Engineering Journal,2005, 38( 9): 74 -79.
[13]申永江,孙红月,尚岳全,等.基于测斜数据的抗滑桩工作状态的评价[J].岩石力学与工程学报,2009,28(S2)3591-3596.
SHEN Yongiang, SUN Hongyue,SHANG Yuequan, et al. Evaluation of state of anti -slide piles based on inclinometer data[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28( S2):3591- 3596.
[14]张磊,施斌,张丹,等.基于BOTDR的滑坡抗滑桩工作状态评价及分析[J].工程地质学报,2018,27(6):1464-1472.
ZHANG Lei, SHI Bin, ZHANG Dan,et al. Evaluation and analysis of working state of anti-slide pile with BOTDR technology[J]. Journal of Engineering Geology. 2019,27(6): 1464- 1472.
[15]申永江,孙红月,尚岳全,等.滑坡推力在悬臂式双排抗滑桩上的分配[J].岩石力学与工程学报.2012(S1):2668-2673.
SHEN Yongjiang, SUN Hongyue, SHANG Yuequan, et al.Distribution of landslide thrust on cantileverdouble-row anti-sliding piles[J],Chinese Journal of Rock Mechanics and Engineering,2012(S1),2668-2673.

备注/Memo

备注/Memo:
收稿日期:2021-04-06修改稿日期:2021-09-24
基金项目:贵阳市轨道交通1号线工程科研课题“近邻深基坑开发项目对城市轨道交通结构影响机制与控制措施研究”
第一作者:胡杨(1986-),女,大学本科,工程师,研究方向为轨道交通建设与管理. E-mail:369263699@qq.com
通讯作者:姜波(1991-),男,硕士,工程师,研究方向为山区高速公路地质灾害治理与岩土工程勘察设计. E-mail:479634279@qq.com
更新日期/Last Update: 2021-10-25