[1]张睿超,王登甲,刘艳峰,等.西藏高原离网光伏供暖系统容量配置优化研究[J].西安建筑科技大学学报(自然科学版),2021,53(06):828-834.[doi:10.15986/j.1006-7930.2021.06.006 ]
 ZHANG Ruichao,WANG Dengjia,LIU Yanfeng,et al.The system form and case analysis of off-grid photovoltaic heating in Tibet Plateau[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):828-834.[doi:10.15986/j.1006-7930.2021.06.006 ]
点击复制

西藏高原离网光伏供暖系统容量配置优化研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
828-834
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
The system form and case analysis of off-grid photovoltaic heating in Tibet Plateau
文章编号:
1006-7930(2021)06-0828-07
作者:
张睿超12王登甲12刘艳峰12王慧琳3王小军3
(1.西部绿色建筑国家重点实验室,陕西 西安 710055; 2.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055; 3.拉萨市设计集团有限公司,西藏 拉萨 850030)
Author(s):
ZHANG Ruichao12 WANG Dengjia12LIU Yanfeng12WANG Huilin3WANG Xiaojun3
(1.State Key Laboratory of Green Building in Western China, Xi'an 710055, China; 2.School of Services Science and Engineering Xi'an Univ. of Arch. & Tech., Xi'an 710055, China; 3.Lhasa Municipality Design Group Co. Ltd., Lhasa 850030, China)
关键词:
离网光伏 采暖 系统形式 TRNSYS 太阳能保证率
Keywords:
off-gird solar photovoltaic heating system form TRNSYS solar fraction
分类号:
TU832.1; TK519
DOI:
10.15986/j.1006-7930.2021.06.006
文献标志码:
A
摘要:
针对西藏高原丰富的太阳能资源条件和迫切的供暖需求,提出了离网光伏条件下,光伏+空气源热泵+蓄电、光伏+空气源热泵+蓄热、光伏+电采暖设备+蓄电三种离网光伏供暖技术形式.以西藏日喀则市某孤立地区居住建筑为研究对象,建立三种“光伏+”供暖系统仿真模型,重点分析了光伏面积、蓄能容量对系统太阳能保证率的影响.结果表明:三种系统中光伏+空气源热泵具有较高的能源利用效率,所需光伏面积较少; 当蓄能形式为蓄热时,光伏+空气源热泵系统所需的蓄能设备容量较小,太阳能保证率较高.
Abstract:
In view of the abundant solar resource conditions and urgent heating demand in the Tibet Plateau, three off-grid photovoltaic heating technology forms are proposed, which are photovoltaic + air source heat pump + electricity storage, photovoltaic + air source heat pump + heat storage and photovoltaic + electric heating equipment + electricity storage. Taking isolated area residential building in Shigatse, Tibet as the research object, three simulation models of “photovoltaic +” heating system were established, focusing on the analysis of the impact of photovoltaic area and energy storage capacity on the solar fraction of the system. The results show that the photovoltaic + air source heat pump of the three systems has higher energy efficiency and requires less photovoltaic area, which should be promoted first. When the energy storage form is heat storage tank, the capacity of energy storage equipment required by the photovoltaic + air source heat pump system is smaller and the solar faction is higher.

参考文献/References:

[1] 李玥,范蕊,肖洪海. 中国西藏地区太阳能供暖系统优化研究[J]. 建筑科学,2019,35(2):21-28.
LI Yue, FAN Rui, XIAO Honghai. The optimization research of solar heating system in tibet[J].Building Science, 2019,35(2):21-28.
[2]王磊,程建国,许志浩,等. 西藏太阳能与水源热泵联合供暖系统优化[J]. 暖通空调,2007,37(11):90-94.
WANG Lei, CHENG Jianguo, XU Zhihao, et al. Optimization of solar energy heating system combined with water source heat pumps in tibet[J]. Journal of HV & AC, 2007,37(11):90-94.
[3]白旭升,李保国,苏树强. 空气式太阳能供暖系统在西藏地区的应用[J]. 暖通空调,2018,48(7):94-97.
BAI Xusheng, LI Baoguo, SU Shuqiang. Application of solar air heating system in tibet area[J]. Journal of HV & AC, 2018,48(7):94-97.
[4]刘艳峰,王登甲.太阳能地面采暖系统蓄热水箱容积分析[J]. 太阳能学报,2009,30(12):1636-1639.
LIU Yanfeng, WANG Dengjia. Volume of heat storage tank for solar floor heating[J]. Acta Enerciae Solaris Sinica, 2009,30(12):1636-1639.
[5]ZHANG R, WANG D, LIU Y, et al. Economic optimization of auxiliary heat source for centralized solar district heating system in Tibetan Plateau, China[J/OL]. Energy Conversion and Management, 2020; 270:114997.
[6]Solar heat for cities: The sustainable solution for district heating[R/OL]. Nov.2019. https://task55.iea-shc.org/publications; [2021-08-10].
[7]TSCHOPP D, TIAN Z, BERBERICH M, et al. Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China Germany and Austria[J]. Applied Energy, 2020,1-19.
[8]Saga in Tibet tests solar heating in public buildings[J/OL]. https://www.solarthermalworld.org/news/saga-tibet-tests-solar-heating-public-buildings; 2021 [2021-08-10].
[9]ZENG R, ZHANG X. Optimization and performance comparison of combined cooling heating and power ground source heat pump/photovoltaic/solar thermal system under different load ratio for two operation strategies[J]. Energy Conversion and Management, 2020, 208(3):1-13.
[10]高国帅. 基于分布式光伏发电的农村家庭电采暖方式优化研究[D].北京:华北电力大学,2019.
GAO Guoshuai. Research on optimization of rural household electric heating mode based on distributed photovoltaic power generation [D]. Beijing: North China Electric Power University,2019.
[11]TONG J, QUAN Z. The study on the performance of solar photovoltaic and air source heat pump composite building energy supply system[C]//10th International Symposium on Heating, Ventilation and Air Conditioning, Jinan China:ISHVAC,2017.
[12]张瑞丹,李银轮,周家城.青海地区光伏供暖技术选型及效益分析[J].河南科技,2020,39(34):139-141.
ZHANG Ruidan, LI Yinlun, ZHOU Jiancheng. Technology selection and efficiency analysis of photovoltaic heating in qinghai region[J]. Henan science and technology,2020,39(34):139-141.
[13]王良,李明,韩友华,等.光伏直驱空气源热泵储能供暖性能分析[J].太阳能学报,2020,41(10):159-166.
WANG Liang, LI Ming, HAN Youhua et al. Analysis of energy storage and heating performance of photovolatic direct-driven air source heat pump.[J].Acta Energiae Solaris Sinica,2020,41(10):159-166.
[14]赵学林. 太阳能光伏光热耦合热泵供热系统动态模拟与性能研究[D].北京:华北电力大学,2020.
ZHAO Xuelin. Dynamic simulation and performance study of solar photovoltaic/thermal coupled heat pump heating system[D]. Beijing: North China Electric Power University,2020.
[15]OZCAN HG, VARGA S, GUNERHAN H, el at. Numerical and experimental work to assess dynamic advanced exergy performance of an on-grid solar photovoltaic-air source heat pump-battery system[J]. Energy Conversion and Management, 2021, 227(1):1-16.
[16]王登甲,刘艳峰.西藏高原太阳能供暖“高原病”问题探讨[J].暖通空调,2021,51(8):7-11.
WANG Dengjia,LIU Yanfeng.“Altitude Sickness”problem of solar heating in Tibetan plateau[J].Journal of HV & AC,2021,51(8):7-11.
[17]KLEIN S A, BECKMAN A, MITCHELLW, et al.(2017)TRNSYS v18: A transient system simulation program. madison, Solar Energy Laboratory. University of Wisconsin - Madison.
[18]HUANG J, FAN J, FURBO S, et al. Economic analysis and optimization of combined solar district heating technologies and systems[J]. Energy, 2019,186:1-16.

备注/Memo

备注/Memo:
收稿日期:2021-07-16修改稿日期:2021-10-27
基金项目:国家自然科学基金项目(52078408,U20A20311); 陕西省杰出青年基金项目(2020JC-43)
第一作者:张睿超(1993-),男,博士生,主要从事太阳能供热技术应用.E-mail:ruichao1210@126.com 通信作者:王登甲(1984-),男,博士,教授,博士生导师,主要从事建筑节能与可再生能源利用方面研究.E-mail:wangdengjia@xauat.edu.cn

更新日期/Last Update: 2021-12-20