[1]黄 帅,孙苏雨婷,董建锴,等.中深层地埋管换热器周围岩土热恢复特性[J].西安建筑科技大学学报(自然科学版),2021,53(06):842-850.[doi:10.15986/j.1006-7930.2021.06.008 ]
 HUANG Shuai,SUNSU Yuting,DONG Jiankai,et al.Heat recovery characteristics of rock and soil around medium-deep borehole heat exchanger[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):842-850.[doi:10.15986/j.1006-7930.2021.06.008 ]
点击复制

中深层地埋管换热器周围岩土热恢复特性()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
842-850
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Heat recovery characteristics of rock and soil around medium-deep borehole heat exchanger
文章编号:
1006-7930(2021)06-0842-09
作者:
黄 帅12孙苏雨婷3董建锴12李 骥4姜益强12
(1.哈尔滨工业大学 建筑学院,黑龙江 哈尔滨 150090; 2.寒地城乡人居环境科学与技术工业和信息化部重点实验室(哈尔滨工业大学),黑龙江 哈尔滨 150090; 3.北京市建设工程造价管理处,北京 101117; 4.中国建筑科学研究院有限公司,北京 100101)
Author(s):
HUANG Shuai12 SUNSU Yuting3 DONG Jiankai12 LI Ji4JIANG Yiqiang12
(1.School of Architecture, Harbin Institute of Technology, Harbin 150090, China; 2.Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology (Harbin Institute of Technology), Ministry of Industry and Information Technology, Harbin 150090, China; 3.Beijing Engineering Cost Administration,Beijing 101117,China; 4.China Academy of Building Research, Beijing 100101, China)
关键词:
中深层地热 地埋管换热器 数值模拟 热恢复 工程实测
Keywords:
medium deep geothermal energy borehole heat exchanger numerical simulation heat recovery engineering measurement
分类号:
TU831; TK529
DOI:
10.15986/j.1006-7930.2021.06.008
文献标志码:
A
摘要:
为揭示中深层地埋管换热器周围岩土的热恢复特性,建立数值传热模型,基于有限差分法进行求解,并利用项目实测数据进行验证,在此基础上分析了中深层地埋管换热器周围岩土全年的温度场变化.主要得出以下结论:特定工况下,中深层地埋管换热器对其周围岩土的热影响范围有限,其热影响半径为9.3 m; 中深层地埋管换热器的取热区域主要集中在1 200~2 000 m的岩土; 岩土热恢复率随着恢复时间的增加而逐渐减小,以恢复两个月的热恢复率为基准,热恢复4个月、6个月、8个月热恢复率在前一基础上分别增加2.1%、0.9%和0.5%; 经过8个月的热恢复期,岩土能够基本恢复至初始温度,当r=0.3 m时埋管深度为1 200 m、1 600 m、1 800 m和2 000 m的岩土所对应的热恢复率分别达98.7%、97.9%、97.9%、98.2%.为中深层地源热泵系统的设计提供理论参考.
Abstract:
To reveal the heat recovery characteristics of the rock and soil around the deep borehole heat exchanger(DBHE), a numerical heat transfer model is established in this paper, which is solved based on the Finite Difference Method(FDM), and verified by the measured data of the project. On this basis, the annual temperature changes of the rock and soil around the DBHE are analyzed. The main conclusions are as follows: under specific working conditions, the heat influence range of the DBHE on the surrounding rock and soil is limited, and its heat-affected radius is 9.3 m; the heat extraction area of the DBHE is mainly concentrated in the rock and soil at a depth of 1 200~2 000 m; the thermal recovery rate of rock and soil gradually decreases with the increase of recovery time. Based on the thermal recovery rate of two months, the thermal recovery rates of four months, six months and eight months increase by 2.1%, 0.9% and 0.5% respectively, so the soil can basically recover to the initial temperature after 8 months of thermal recovery. When r=0.3 m, the corresponding thermal recovery rates of the buried pipe with depth of 1 200 m, 1 600 m, 1 800 m and 2 000 m are 98.7%, 97.9%, 97.9% and 98.2% respectively. This study can provide a theoretical reference for the design of DBHE.

参考文献/References:

[1] 张雅欣,罗荟霖,王灿. 碳中和行动的国际趋势分析[J]. 气候变化研究进展,2021,17(1): 88-97.
ZHANG Yaxin, LUO Huilin, WANG can. Progress and trends of global carbon neutrality pledges[J]. Climate Change Research, 2021, 17(1): 88-97.
[2]江亿,胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5): 1-13.
JIANG Yi, HU Shan. Paths to carbon neutrality in China's building sector[J]. HV & AC, 2021, 51(5): 1-13
[3]满意,姜国心,杜甜甜,等. 利用弃井开采中深层地热能名义取热量的模拟[J]. 山东建筑大学学报. 2019, 34(4): 20-24.
MAN Yi, JIANG Guoxin, DU Tiantian, et al. Modeling of deep and middle geothermal energy utilization in abandoned oil wells[J]. Journal of Shandong Jianzhu University. 2019, 34(4): 20-24
[4]王德敬,胡松涛,高志友,等. 中深层套管式地埋管换热器性能的参数分析[J]. 区域供热. 2018(3): 1-7.
WANG Dejing, HU Songtao, GAO Zhiyou, et al. Parameter analysis of the performance of the deep borehole heat exchanger[J]. District Heating. 2018(3): 1-7
[5]王沣浩,蔡皖龙,王铭,等. 地热能供热技术研究现状及展望[J]. 制冷学报. 2021, 42(1): 14-22.
WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration. 2021, 42(1): 14-22
[6]龚皓玥,陈金华. 重庆地区竖直双U形地埋管换热器周围土壤温度恢复性能研究[J]. 暖通空调. 2016, 46(3): 89-93.
GONG Haoyue, CHEN Jinhua. Study on soil temperature restoration around vertical double U-type ground heat exchanger in Chongqing[J]. HV&AC. 2016, 46(3): 89-93
[7]陆游,王恩宇,杨久顺,等. 地源热泵系统土壤温度变化的影响因素分析[J]. 河北工业大学学报. 2015, 44(1): 66-72.
LU You, WANG Enyu, YANG Jiushun, et al. Analysis of the impacting factor on ground temperature field of ground source heat pump system[J]. Journal of Hebei University of Technology. 2015, 44(1): 66-72
[8]罗仲,张旭. 小型土壤源热泵冬季间歇运行的地温恢复特性实验研究[J]. 制冷技术. 2015, 35(4): 1-5.
LUO Zhong, ZHANG Xu. Experimental investigation on ground temperature restorative characteristics underIntermittent operation condition in winter for a small ground source heat pump system[J]. Refrigeration technology. 2015, 35(4): 1-5
[9]李绪泉,于恒杰,胡松涛,等. 变热流工况土壤导热系数对热恢复特性的影响研究[J]. 青岛理工大学学报. 2014, 35(5): 98-102.
LI Xuquan, YU Hengjie, HU Songtao, et al. Effect of soil thermal conductivity to heat recovery characteristic in the case of variable heat conditions[J]. Journal of Qingdao University of technology. 2014, 35(5): 98-102
[10]唐晓音,程璐瑶,许威,等. 西安地区中深层套管式地埋管换热性能数值模拟[J]. 地质科学, 2021, 56(3): 985-999.
TANG Xiaoyin, CHENG Luyao, XU Wei, et al. Numerical study on factors that influence the heat transfer performance of mid-deep coaxial casing heat exchanger in the Xi'an area[J]. Geological Sciences. 2021, 56(3): 985-999.
[11]BEIER R A. Thermal response tests on deep borehole heat exchangers with geothermal gradient[J]. Applied Thermal Engineering. 2020, 178: 115447.
[12]PAN A, LU L, CUI P, et al. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes[J]. International Journal of Heat and Mass Transfer. 2019, 141: 1056-1065.
[13]LUO Y, GUO H, MEGGERS F, et al. Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis[J]. Energy. 2019, 185: 1298-1313.
[14]LI J, XU W, LI J, et al. Heat extraction model and characteristics of coaxial deep borehole heat exchanger[J]. Renewable Energy. 2021, 169: 738-751.
[15]LIU J, WANG F, CAI W, et al. Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger[J]. Renewable Energy. 2020, 149: 384-399.
[16]CAI W, WANG F, LIU J, et al. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems[J]. Applied Thermal Engineering. 2019, 149: 975-986.
[17]贾林瑞,崔萍,方亮,等. 中深层地埋管换热器传热过程对周围岩土体的热影响[J]. 暖通空调. 2020,51(1): 1-7.
JIA Linrui, CUI Ping, FANG Liang, et al. Thermal effect of heat transfer process of deep borehole heat exchangers on surrounding rock and soil[J]. HV & AC. 2020,51(1): 1-7.
[18]杜甜甜,满意,姜国心,等. 中深层地埋管换热器最佳钻孔间距的模拟研究[J]. 煤气与热力. 2019, 39(11): 21-24.
DU Tiantian, YI Man, JIANG Guoxin, et al. Simulation study on optimal drilling spacing of medium and deep buried tube heat exchanger[J]. Gas & heat. 2019, 39(11): 21-24
[19]蔡皖龙,刘俊,王沣浩,等. 深层地埋管换热器换热性能模拟及稳定性研究[J]. 太阳能学报. 2020, 41(2): 158-164.
CAI Wanlong, LIU Jun, WANG FengHao, et al. Research on heat performance and stability of deep borehole heat exchanger[J]. Acta solar energy Sinica. 2020, 41(2): 158-164
[20]PIECHOWSKI M. Heat and mass transfer model of a ground heat exchanger: Validation and sensitivity analysis[J]. International Journal of Energy Research. 1998, 22(11): 965-979.
[21]刘晓燕,赵军,石成,等. 土壤恒温层温度及深度研究[J]. 太阳能学报. 2007,28(5): 494-498.
LIU Xiaoyan, ZHAO Jun, SHI Cheng, et al. Study on soli layer of constant temperature[J]. Acta energiae Solaris Sinica. 2007,28(5): 494-498.
[22]贾力等,方肇洪. 高等传热学[M]. 北京:高等教育出版社, 2008.
JIA Li,FANG Zhaohong. Advanced heat transfer [M]. Beijing: Higher Education Press, 2003
[23]FANG L, DIAO N, SHAO Z, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings. 2018, 167: 79-88.
[24]杜甜甜,满意,姜国心,等. 套管式中深层地埋管换热器传热建模及取热分析[J]. 可再生能源. 2020, 38(7): 887-892.
DU Tiantian, MAN Yi, JIANG Guoxin, et al. Transfer modeling and heat extraction analysis of coaxial tubes deep borehole heat exchanger[J]. Renewable energy Resources. 2020, 38(7): 887-892
[25]汪集暘,等. 地热学及其应用[M]. 北京:科学出版社, 2015.
WANG Jiyang, et al. Geothermal science and its application [M]. Beijing: Science Press, 2015
[26]李骥,徐伟,李建峰,等. 中深层地埋管供热技术综述及工程实测分析[J]. 暖通空调. 2020, 50(8): 35-39.
LI Ji, XU Wei, LI Jianfeng, et al. Heat supply technology review and engineering measurement analysis of medium and deep buried pipes[J]. HV&AC. 2020, 50(8): 35-39
[27]黄帅,董建锴,姜建中,等. 中深层同轴套管式地埋管换热器取热特性[J]. 东北电力大学学报. 2021, 41(4): 16-23.
HUANG Shuai, DONG Jiankai, JIANG Jianzhong, et al. Heat extraction performance of medium and deep borehole heat exchanger[J]. Journal of Northeast Electric Power University. 2021, 41(4): 16-23.

备注/Memo

备注/Memo:
收稿日期:2021-04-16修改稿日期:2021-11-07
基金项目:中美政府间国际合作项目(2019YFE0100300); 黑龙江省自然科学基金优秀青年项目(YQ2019E024)
第一作者:黄 帅(1997-),男,硕士生,主要从事中深层地源热泵研究.E-mail:sds_hs@163.com 通信作者:董建锴(1982-),男,教授,博士生导师,主要从事热泵空调技术方面的研究工作.E-mail:djkheb@163.com

更新日期/Last Update: 2021-12-20