[1]吴 晓,黄 翀,杨立军.非线性基础上拉压弹性模量不同矩形板的弯曲[J].西安建筑科技大学学报:自然科学版,2013,45(06):778-783.[doi:10.15986/j.1006-7930.2013.06.004]
 WU Xiao,HUANG Chong,YANG Li-jun.Bending of rectangular plate with difference elastic modulus intension and compression based on nonlinear foundation[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(06):778-783.[doi:10.15986/j.1006-7930.2013.06.004]
点击复制

非线性基础上拉压弹性模量不同矩形板的弯曲()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
45
期数:
2013年06期
页码:
778-783
栏目:
出版日期:
2013-12-31

文章信息/Info

Title:
Bending of rectangular plate with difference elastic modulus intension and compression based on nonlinear foundation
文章编号:
1006-7930(2013)06-0778-06
作者:
吴 晓黄 翀杨立军
(湖南文理学院土木建筑工程学院,湖南 常德 415000)
Author(s):
WU Xiao HUANG Chong YANG Li-jun
(Dept. of Civil and Architectural Engineering, Hunan University of Arts and Science, Changde 415000, China)
关键词:
非线性基础弹性模量矩形板弯曲
Keywords:
nonlinearity foundation elastic modulus rectangular plate bending
分类号:
O 343.5
DOI:
10.15986/j.1006-7930.2013.06.004
文献标志码:
A
摘要:
采用弹性理论研究了非线性基础上拉压弹性模量不同矩形板的弯曲问题.建立了非线性基础上拉压弹性模量不同材料板的弯曲微分方程.对于非线性基础上拉压弹性模量不同材料板弯曲变形问题,选取梁函数作为试函数,采用Kantorovich及Galerkin联合法推导出了非线性基础上拉压弹性模量不同材料板的解析解,该方法计算结果与有关文献计算结果的误差很小.所以,选取梁函数作试函数,采用Kantorovich及Galerkin联合法研究拉压弹性模量不同矩形板的弯曲变形问题是可行的.把该方法计算结果与有限元法计算结果进行比较分析,验证了此方法计算精度比较高.算例分析表明,拉压弹性模量相差较大时,矩形板弯曲计算不宜采用相同弹性模量经典薄板理论,而应采用拉压弹性模量不同弹性理论.
Abstract:
Bending of rectangular plate with difference elastic modulus in tension and compression based on nonlinear foundation is studied by using elastic theory. Bending differential equations of plate with difference elastic modulus in tension and compression based on nonlinear foundation are established. For bending of plate with difference elastic modulus intension and compression based on nonlinear foundation, by taking beam functions as trial functions, analytical solutions of plate with difference elastic modulus in tension and compression based on nonlinear foundation are deduced with the combination method of Kantorovich with Galerkin, and calculation errors between analytical solutions and relevant literatures proved to be small. So, it is feasible that the combination method of Kantorovich with Galerkin is used in studying bending of rectangular plate with difference elastic modulus in tension and compression based on nonlinear foundation by taking beam functions as trial functions. Calculation results are compared with that obtained by finite element, and the accuracy of this method is verified relatively high. The analysis of examples indicated that bending calculation of rectangular plate which has larger difference between tensile elastic modulus and compressive elastic modulus may not apply classical elastic theory with the same elastic modulus, and elastic theory of difference elastic modulus in tension and compression can not be used either.

参考文献/References:

[1] 阿巴尔楚米扬 S A. 不同模量弹性理论[M]. 邬 瑞锋, 张允真, 译. 北京: 中国铁道出版社,1986:274-275.
AMBARTSUMYAN S A. Elasticity theory of different modulus[M].WU Rui-Feng, ZHANG Yun-Zhen, translated. Beijing: China Railway Press,1986:274-275.
[2] 蔡 来生, 俞焕然. 拉压模量不同弹性物质的本构[J]. 西安科技大学学报,2009,29(1) :17-21.
CAI Lai-sheng, YU Huan-ran. Constitutive relation of elastic materials with different elastic moduliintension and compression [J].Journal of Xi′an University of Science and Technology,2009,29(1) :17-21.
[3] 罗 战友, 夏建中, 龚晓南. 不同拉压模量及软化特性材料的柱形孔扩张问题的统一解[J]. 工程力学,2008,25(9):79-84.
LUO Zhan-you, XIAJian-zhong, GONG Xiao-nan. Unified solution for expansion of cylindrical cavity in strain-softening materials with different elastic moduliintension and compression[J].Engineering Mechanics,2008,25 (9) :79-84.
[4] 张晓月 . 基于敏度分析的不同模量桁架正反问题求解[D]. 大连: 大连理工大学,2008.
ZHANG Xiao-yue. Sensitivity analysis based numerical solutions of normal and inverse problems of elastic bimodular truss structure[D].Dalian: Dalian University of Technology, 2008.
[5] 杨海天, 张晓月 , 何宜谦. 基于敏度分析的拉压不同模量桁架问题的数值分析[J]. 计算力学学报,2011,28(2):237-242.
YANG Hai-tian, ZHANG Xiao-yue, HE Yi-qian. Sensitivity analysis based numerical solution for truss structures with bi-modulus [J].Chinese Journal of Computational Mechanics, 2011,28(2) :237-242.
[6] 吴 晓, 杨 立军, 黄 翀, 等. 用能量法研究双模量大挠度圆板的轴对称弯曲 [J]. 计算力学学报, 2011,28(2) :274-278.
WU Xiao , YANG Li-jun , HUANG Chong , et al. Large deflection ax symmetric bending of bi-modulous circular plate with energy method [J ].Chinese Journal of Computational Mechanics ,2011,28(2) :274-278.
[7] 吴 晓, 杨 立军, 黄 翀, 等. 双模量矩形板的大挠度弯曲计算分析[J]. 工程力学, 2010,27(1) :17-22.
WU Xiao, YANG Li-jun, HUANG Chong, et al. Large deflection bending calculation and analysis of bimodulous rectangular plate[J].Engineering Mechanics, 2010, 27(1) : 17-22.
[8] 吴 晓, 杨 立军. 拉压弹性模量不同厚壁球 壳 的 弹 性 解 析 解[J]. 湖 南 科 技 大 学 学 报: 自 然 科 学 版,2012,27(4) :35-38.
WU Xiao, YANG Li-jun. Elastic solutions for thick wall spherical shell of bimodulous materials under uniform pressure[J].Journal of Hunan University of Science & Technology: Natural Science Edition, 2012,27(4) :35-38.
[9] 吴 晓, 杨 立军, 黄 翀. 双模量圆板中心在冲击荷载作用下的弹性计算[J]. 西安建筑科技大学学报: 自然科学版,2012,44(5) :614-619.
WU Xiao, YANG Li-jun, HUANG Chong. Elastic dynamic calculation for bimodulous circular plate under the condition of impact load[J].Journal of Xi′an Univ. of Arch. & Tech.: Natural Science Edition, 2012, 44(5) :614- 619.
[10] 吴 晓, 黄 翀, 孙 晋. 双模量悬臂梁在分布荷载作用下的 Kantorovich 解[J]. 湖 南科技大学学报: 自然科学版,2012,27(2) :55-59.
WU Xiao, HUANG Chong, SUN Jin. The Kantorovich solution for bimodulous cantilever under distributed loads[J].Journal of Hunan University of Science & Technology: Natural Science Edition,2012,27(2) :55-59.
[11] 吴 晓, 黄 翀, 杨 立军. 双模量平行四边形板弯曲的 Kantorovich 变 分解[J]. 力学季刊 ,2010,31(4) :597-603.
WU Xiao, HUANG Chong, YANG Li-jun. Kantorovich variational solution of bending bimodulous parallelogram plate[J].Chinese Quarterly of Mechanics, 2010, 31(4): 597-603.

相似文献/References:

[1]王志强,申建红.土-结构相互作用系统地震动力特性的突变理论分析[J].西安建筑科技大学学报:自然科学版,2012,44(04):463.[doi:10.15986/j.1006-7930.2012.04.002]
 WANG Zhi-qiang,SHEN Jian-hong.Analysis on the seismic dynamic characteristics of soil-structure interaction system by Catastrophic Theory[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2012,44(06):463.[doi:10.15986/j.1006-7930.2012.04.002]
[2]党 栋,贺拴海,高小妮.基于不同结构形式的钢箱梁锚固区力学行为研究[J].西安建筑科技大学学报:自然科学版,2012,44(06):818.[doi:10.15986/j.1006-7930.2012.06.010]
 DANG Dong,HE Shuan-hai,GAO Xiao-ni.Mechanical behavior analysis on different structural forms of steel box girder anchorage zone[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2012,44(06):818.[doi:10.15986/j.1006-7930.2012.06.010]
[3]吴 晓,黄 翀.温度场中功能梯度材料圆板的非线性弯曲[J].西安建筑科技大学学报:自然科学版,2013,45(05):694.[doi:10.15986/j.1006-7930.2013.05.015]
 WU Xiao,HUANG Chong.Nonlinear bending calculation of FGM circular plate in the temperature field[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(06):694.[doi:10.15986/j.1006-7930.2013.05.015]
[4]胡庆安,李 轲,凤跃森.π型钢板应用于板梁桥加固的非线性研究[J].西安建筑科技大学学报:自然科学版,2014,46(01):16.[doi:10.15986/j.1006-7930.2014.01.004]
 HU Qingan,LI Ke,FENG Yuesen.Nonlinear research of -type steel used for plate-beam bridge strengthening[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(06):16.[doi:10.15986/j.1006-7930.2014.01.004]
[5]张倩,莫建超,孙建鹏.地震作用下高墩大跨连续刚构桥的非线性动力稳定性能研究[J].西安建筑科技大学学报:自然科学版,2018,50(01):13.[doi:10.15986/j.1006-7930.2018.01.003]
 ZHANG Qian MO JianchaoSUN Jianpeng.Study on nonlinear dynamic stability of continuous rigid frame bridge with high piers under seismic action[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2018,50(06):13.[doi:10.15986/j.1006-7930.2018.01.003]

备注/Memo

备注/Memo:
收稿日期:2013-01-22 修改稿日期:2013-11-30
基金项目:湖南省科技计划项目(湘财企指[2011]65号);湖南“十二五”重点建设学科项目资助
作者简介:吴 晓(1965-),男,湖南常德人,教授,主要从事结构振动理论研究.
更新日期/Last Update: 2015-10-05