[1]吴 晓,杨立军,黄 翀.不同模量面板夹心泡沫铝板大挠度弯曲[J].西安建筑科技大学学报:自然科学版,2014,46(02):181-186.[doi:10.15986/j.1006-7930.2004.02.006]
 WU Xiao,YANG Lijun,HUANG Chong..Large deflection bending of different modulus panelaluminum foam core laminated plate[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(02):181-186.[doi:10.15986/j.1006-7930.2004.02.006]
点击复制

不同模量面板夹心泡沫铝板大挠度弯曲()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年02期
页码:
181-186
栏目:
出版日期:
2014-04-30

文章信息/Info

Title:
.Large deflection bending of different modulus panel
aluminum foam core laminated plate
文章编号:
1006-7930(2014)02-0181-06
作者:
吴 晓 杨立军 黄 翀
(湖南文理学院,湖南常德 415000)
Author(s):
WU Xiao YANG Lijun HUANG Chong
(Hunan University of Arts and Science, Changde 415000, China)
关键词:
不同模量泡沫铝层合板大挠度弯曲
Keywords:
different modulous aluminum foam laminated plate large deflection bending
分类号:
O341
DOI:
10.15986/j.1006-7930.2004.02.006
文献标志码:
A
摘要:
采用不同弹性理论研究了矩形不同模量面板夹心泡沫铝板大挠度弯曲问题,确定了矩形不同模量面板夹心泡沫铝板
弯曲时的中性面位置.利用不同弹性理论建立了矩形不同模量面板夹心泡沫铝板在外载荷作用下的大挠度弯曲微分方程组,
采用Galerkin 原理求得了矩形不同模量面板夹心泡沫铝板中心挠度与均布载荷的关系式.通过算例分析讨论可知,当材料弹
性模量相差较大时,不同模量弹性理论与经典弹性理论两种方法在矩形不同模量面板夹心泡沫铝板中心挠度的计算上存在较
大的差异.
Abstract:
By using elasticity theory Large deflection problem of different modulus panel aluminum foam core laminated plate was studied. The location of neutral plane in panel aluminum foam core laminated plate was determined. The large deflection bending deformation differential equations of different modulus rectangular panel aluminum foam core laminated plate was derived, and the relation expression between central deflection of laminated plate and uniform load was obtained. The elastic theory on different modulus?and?the classical theory of elasticity?of two kinds of?method have great differences?in the?structural deflection calculation by calculation and?analysis of examples

参考文献/References:

参考文献 References
[1] 王展光, 单建, 何德坪. 金字塔栅格夹心夹层板动力响应分析[J]. 力学季刊, 2006, 27(4):707-713.
WANG ZHANguang, SHAN Jian, HE Deping. Dynamic response analysis of sandwich plates with pyramidal truss cores[J].
Chinese Quarterly of Mechanics, 2006, 27(4):707-713.
[2] 于英华, 高华. 泡沫铝/铸铁层合梁弯曲性能有限元分析[J]. 现代制造工程, 2008(7): 39-42.
YU Yinghua, GAO Hua. Study on bending performance of foam aluminum/cast iron sandwich beam by FEA[J]. Modern Man-
[3] 梁晓军, 朱勇刚, 陈峰, 等. 泡沫铝芯三明治板的粉末冶金制备及其板/芯界面研究[J]. 材料科学与工程学报, 2005, 23(1):
77-80.
LIANG Xiaojun, ZHU Yonggang, CHEN Feng, et al. Research on preparation of aluminium foam sandwich by powder metallurgical
method and face plate/foam core interfacial microstructure[J]. Journal of Materials Science and Engineering, 2005,
23(1): 77-80.
[4] 查海波, 凤仪, 朱琪琪, 等. 泡沫铝层合梁的弯曲性能[J]. 中国有色金属学报, 2007, 17(2):290-295.
ZHA Haibo, FENG Yi, ZHU Qiqi, et al. Bending capability of foam aluminum sandwich beams[J]. The Chinese Journal of
Nonferrous Metals, 2007, 17(2):707-713.
[5] 尚金堂, 何德坪. 泡沫铝层合梁的三点弯曲变形[J]. 材料研究学报, 2003, 17(1):31-38.
SHANG Jintang, HE Deping. Deformation of sandwich beams with Al foam cores in three-point bending[J]. Chinese Journal
of Materials Research, 2003, 17(1):31-38.
[6] 王青春, 范子杰, 桂良进, 等. 中等应变率下泡沫铝的吸能特性[J]. 材料研究学报, 2005, 19(6):601-607.
WANG Qingchun, FAN Zijie, GUI Liangjin, et al. Energy absorption behaviour of aluminium foam under medium strain
rate[J]. Chinese Journal of Materials Research, 2005, 19(6):601-607.
[7] 李战莉,黄再兴.双模量泡沫材料等效弹性模量的细观力学估算方法[J].南京航空航天大学学报,2006, 38(4): 464-468.
LI Zhanli, HUANG Zaixing. Meso-Mechanical method for estimating equivalent elastic modulus of foam-solid with
double-modulus[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(4): 464-468.
[8] 曾纪杰.对中柔度压杆的双模量理论的修正[J].机械强度,2006, 28(3): 462-464.
ZENG JiJie. Revision of the formula with bimodulusim intermediate column[J]. Journal of Mechanical Strength, 2006, 28(3):
462-464.
[9] 蔡来生,俞焕然.拉压模量不同弹性物质的本构[J].西安科技大学学报,2009, 29(1): 17-21.
CAI Laisheng, YU Huanran. Constitutive relation of elastic materials with different elastic moduli in tension and compression[
J]. Journal of Xi’an University of Science and Technology, 2009, 29(1): 17-21.
[10] 罗战友,夏建中,龚晓南.不同拉压模量及软化特性材料的柱形孔扩张问题的统一解[J].工程力学,2008, 25(9): 79-84.
LUO Zhanyou, XIA Jianzhong, GONG Xiaonan. Unified solution for expansion of cylindrical cavity in strain-softening materials
with different elastic moduli in tension and compression[J], Engineering Mechanics, 2008, 25(9): 79-84.
[11] 阿巴尔楚米扬.不同模量弹性理论[M].邬瑞锋,张允真,译.北京:中国铁道出版社,1986:11-22.
Ambartsumyan S A,Elasticity theory of different modulus[M].WU Ruifeng,ZHANG Yunzhen Translation. Beijing:China
Railway Press,1986:11-22 .
[12] Meir Destrade. Biomodular rubber buckles early in bending[J].Mechanics of Materials,2009(42):469-476.
[13] Meir Barak. Are tensile and compressive Young's moduli of compact bone different[J].Journal of the Mechanical Behavior of
Bio-medical Materials, 2009(2): 51-60.
[14] Qu Chengzhong. Deformation of geocell with different tensile and compressive modulus[J]. Electronic Journal of Geotechnical
Engineering,2009(14):1-14.
[15] Haitian Yanga, Mingling xuab. Solving inverse bimodular problems via artificial neural network[J]. Inverse Problems in
Science and Engineering, 2009, 17(8): 999-1017.
L Zhanli, HUANG Zaixing. Meso-Mechanical method for estimating equivalent elastic modulus of foam-solid with double-modulus[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(4): 464-468.
[8] 曾纪杰.对中柔度压杆的双模量理论的修正[J].机械强度,2006, 28(3): 462-464.

备注/Memo

备注/Memo:
收稿日期:2013-02-06 修改稿日期:2014-04-08
金基金项目:湖南省“十二五”重点建设学科(湘教发2011[76])
作者简介:吴晓(1965-),男,教授,主要从事结构振动理论研究. E-mail:wx2005220@163.com
更新日期/Last Update: 2015-10-10