[1]高凤妮,周恩毅.建筑行业群体应激行为治理的社会网络视角分析[J].西安建筑科技大学学报:自然科学版,2014,46(04):546-552.[doi:10.15986/j.1006-7930.2014.04.016]
 GAO Fengni,ZHOU Enyi.Social network analysis on group stress behaviors governance in construction industry[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(04):546-552.[doi:10.15986/j.1006-7930.2014.04.016]
点击复制

建筑行业群体应激行为治理的社会网络视角分析()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年04期
页码:
546-552
栏目:
出版日期:
2014-08-31

文章信息/Info

Title:
Social network analysis on group stress behaviors governance in construction industry
文章编号:
1006-7930(2014)04-0546-07
作者:
高凤妮周恩毅
(西安建筑科技大学管理学院,陕西 西安 710055)
Author(s):
GAO Fengni ZHOU Enyi
(School of Management, Xi’an Univ. of Arch. & Tech., Xi’an 710055,China)
关键词:
建筑行业群体应激行为社会网络分析社会影响社会参与者
Keywords:
construction industry group stress behavior social network analysis social effect social participants
分类号:
C91
DOI:
10.15986/j.1006-7930.2014.04.016
文献标志码:
A
摘要:
从社会网络分析的视角出发,运用社会网络理论和方法对建筑行业群体应激行为的信息传播机制以及在社会影响下的 网络个体的演化过程进行研究.通过分析、掌握建筑行业群体事件社会网络中信息流动和传播途径,以及群体应激行为在群体事件中发展轨迹和特点,以帮助建立和完善地方政府将“以人为中心”的柔性治理和“以制度为中心”的刚性治理相结合的刚柔并济、行之有效的治理建筑行业群体应激行为的公共危机风险控制机制,形成反应灵敏、运转高效、功能齐全的建筑行业风险防范管理体系.
Abstract:
From the perspective of social network analysis, we focused on the information dissemination mechanism and the evolution of individuals in the social network with social influence by using social network theory and method of group stress behaviors in construction industry. By analyzing the model to understand the information flow and transmission path in the construction industry group incidents and the characteristics and evolution process, local government is helped to improve the "people-centered" flexible governance and establish a "system-centric" and rigid governance combined pubic crisis risk control mechanism of construction industry, and thus formulate a full functional risk prevention management system.

参考文献/References:

[1] Wasserman S. Social network analysis: Methods and applications [M]. New York: Cambridge university press, 1994.

[2] 刘军. 社会网络分析导论: An introduction to social network analysis [M]. 北京:社会科学文献出版社, 2004.

LIU Jun. Introduction to Social Network Analysis: An introduction to social network analysis [M]. Beijing: Social Sciences Academic Press, 2004.

[3] 刘军. 法村社会支持网络: 一个整体研究的视角 [M]. 北京:社会科学文献出版社, 2006.

LIU Jun. Social support networks of village: a whole network approach [M]. Beijing: Social Sciences Academic Press, 2006.

[4] Brashears M E. Social Influence Network Theory: A sociological examination of group dynamics [J]. J Math Sociol, 2013, 37(3): 192-193.

[5] PARK C H, KOO J H. An analysis of the influential relationship between cultural promotion activities and social capital in the traditional market: a comparative view with routine merchant activities [J]. J Asian Archit Build, 2014, 13(1): 71-78.

[6] PHANG C W, ZHANG C H, SUTANTO J. The influence of user interaction and participation in social media on the consumption intention of niche products [J]. Inform Manage-Amster, 2013, 50(8): 661-672.

[7] 林聚任. 社会网络分析 [M]. 北京: 北京师范大学出版社, 2009.

LIN Juren.. Social Network Analysis [M]. Beijing: Beijing Normal University Press, 2009.[8] 罗家德. 社会网络分析讲义 [M]. 北京: 社会科学文献出版社, 2005,

LUO Jiade. Social Network Analysis Handout [J]. Beijing: Beijing: Social Sciences Academic Press, 2005,

[9] WATTS D J, STROGATZ S H. Collective dynamics of ’small-world’ networks [J]. Nature, 1998, 393(6684): 440-442.

[10] NEWMAN M E J, WATTS D J. Scaling and percolation in the small-world network model [J]. Phys Rev E, 1999, 60(6): 7332-7342.

[11] BARABÁSI A L, ALBERT R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509-512.

[12] JAIN R K, GULBINAS R, TAYLOR J E et al. Can social influence drive energy savings? Detecting the impact of social influence on the energy consumption behavior of networked users exposed to normative eco-feedback [J]. Energ Buildings, 2013, 66: 119-127.

[13] CHAUDHURY A, BASUCHOWDHURI P, MAJUMDER S. Spread of Information in a Social Network Using Influential Nodes [M]. Berlin: Heidelberg ,Springer 2012.

[14] YANG C C, LIU N, SAGEMAN M. Analyzing the terrorist social networks with visualization tools [J]. Lect Notes Comput Sc, 2006, 3975,331-342.

[15] KOSSINETS G, WATTS D J. Empirical analysis of an evolving social network [J]. Science, 2006, 311(5757): 88-90.

[16] DODDS P S, WATTS D J, SABEL C F. Information exchange and the robustness of organizational networks [J]. P Natl Acad Sci USA, 2003, 100(21): 12516-12521.

[17] ZHAO L J, WANG X L, QIU X Y, et al. A model for the spread of rumors in Barrat-Barthelemy-Vespignani(BBV) networks[J]. Physica A, 2013, 392(21): 5542-5551.

[18] SANTOS E E, PAN L, WILKINSON J T, et al. Infusing Social Networks With Culture [J]. Ieee T Syst Man Cy-S, 2014, 44(1): 1-17.

[19] Ortiz Arroyo D. Discovering sets of key players in social networks [M]. London: Springer, 2010.

[20] Ortiz Arroyo D, HUSSAIN D M A. An information theory approach to identify sets of key players [M]. Berlin Heidelberg :Springer. 2008.

[21] BORGATTI S. Identifying sets of key players in a social network [J]. Comput Math Organiz Theor, 2006, 12(1): 21-34.

[22] GRANOVETTER M. The strength of weak ties [J]. American journal of sociology, 1973, 78(6): l.

[23] TUTZAUER F. Entropy as a measure of centrality in networks characterized by path-transfer flow [J]. Soc Networks, 2007, 29(2): 249-265.

[24] FREEMAN L C. Centrality in social networks conceptual clarification [J]. Soc Networks, 1978, 1(3): 215-239.

[25] SKIENA S. Dijkstra’s Algorithm [C]//Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Reading, MA: Addison-Wesley, 1990, 225-227.

[26] TARJAN R. Depth-first search and linear graph algorithms [J]. SIAM journal on computing, 1972, 1(2): 146-160.

备注/Memo

备注/Memo:
基金项目:陕西省社科联课题(2012Z035)
收稿日期:2013-04-07 修改稿日期:2014-08-01
作者简介:高凤妮(1972-),女,副教授,博士生,主要从事思想政治教育与危机管理方面的研究.E-mail:47829335@qq.com
更新日期/Last Update: 2015-10-06