[1]史庆轩.,田建勃,丁铁锋,等.钢板-混凝土组合连梁抗震性能有限元分析[J].西安建筑科技大学学报:自然科学版,2014,46(05):622-628.[doi:10.15986/j.1006-7930.2004.05.002]
 SHI Qingxuan,TIAN Jianbo,DING Tiefeng,et al.Nonlinear finite element analysis on the seismic behavior of plate-reinforced composite coupling beams[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(05):622-628.[doi:10.15986/j.1006-7930.2004.05.002]
点击复制

钢板-混凝土组合连梁抗震性能有限元分析()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年05期
页码:
622-628
栏目:
出版日期:
2014-10-31

文章信息/Info

Title:
Nonlinear finite element analysis on the seismic behavior of plate-reinforced composite coupling beams
文章编号:
1006-7930(2014)05-0622-07
作者:
史庆轩1.2田建勃1丁铁锋1王 南1王 朋1王 斌1
. (西安建筑科技大学土木工程学院,陕西 西安 710055)
Author(s):
SHI Qingxuan12 TIAN Jianbo1 DING Tiefeng1 WANG Nan1 WANG Peng1 WANG Bin1
(1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;
2. State Key Laboratory of Architecture Science and Technology in West(XAUAT), Xi’an 710055, China)
关键词:
钢板-混凝土组合连梁小跨高比抗震性能数值模拟
Keywords:
plate-reinforced composite coupling beam small span-to-depth ratio seismic behavior numerical simulation
分类号:
TU398
DOI:
10.15986/j.1006-7930.2004.05.002
文献标志码:
A
摘要:
采用有限元软件对钢板-混凝土组合(PRC)连梁抗震性能进行了数值模拟,通过与试验结果的对比,验证了模型的
正确性.通过大量的数值模拟,研究了跨高比、钢板锚固长度、钢板厚度、纵筋配筋率和墙肢配筋率等参数对钢板-混凝土
组合连梁抗震性能的影响.结果表明:采用混凝土应力-断裂能关系来考虑混凝土受拉软化性能,能较好的进行钢板-混凝土组
合连梁的弹塑性有限元分析;跨高比的变化对其屈服荷载和峰值荷载影响显著,随着跨高比的增大,连梁的屈服荷载和峰值
荷载逐渐减小,但其延性性能逐渐提高;连梁的承载力和刚度随钢板锚固长度、钢板厚度和纵筋配筋率的增加而增加,但其
增加的程度随连梁跨高比的减小而减小;连梁的承载力随墙肢配筋率的增加逐渐增大,增加的程度随墙肢配筋率的增加而减
小.
Abstract:
Seismic behavior of plate-reinforced composite (PRC) coupling beams was simulated based on the finite element software, and the calculated results were compared with those of the experiments to ensure the correcteness of the simulation model.Furthermore,with abundant simulations, span-to-depth ratio, plate anchorage length in the wall region, plate thickness, longitudinal reinforcement ratio of beam and wall reinforcement ratio were all considered to analyse the effect on seismic behavior of PRC coupling beams.The results show that the tension softening property of concrete was simulated based on the relationship between stress and fracture energy, and the elastic-plasticity finite element analysis of the model was better conducted. The effects of changes of span-to-depth ratios on yield loads and peak loads of the coupling beams are significant. The yield loads and peak loads of PRC coupling beams gradually decrease with the increase of span-to-depth ratios, but?their ductility performance is gradually improved. The load bearing capacity and stiffness of the coupling beams increase with the plate anchorage lengths, plate thicknesses and longitudinal reinforcement ratios, but the effects diminish as the span-to-depth ratios of coupling beams decrease. The load bearing capacity of the coupling beams increase with the increaseing wall reinforcement ratios, but the effects diminish as the wall reinforcement ratios increase

参考文献/References:

参考文献 References
[1] SUBEDI N K. Reinforced concrete beams with plate reinforcement for shear[C]// Proceedings of the Institution of Civil Engineers, Part 1-Design & Construction. London: ICE Publishing, 1989: 377- 399.
[2] LAM W Y, SU R K L, PAM H J. Strength and ductility of embedded steel composite coupling beams[J]. International Journal of Advances in Structural Engineering, 2003, 6(1): 23-35.
[3] LAM W Y, SU R K L, PAM H J. Experimental study on embedded steel plate composite coupling beams[J]. Journal of Structural Engineering, ASCE, 2005,131(8): 1294-1302.
[4] SU R K L, LAM W Y. A unified design approach for plate-reinforced composite coupling beams[J]. Journal of Constructional Steel Research, 2009(65): 675-686.
[5] CHENG P C. Shear capacity of steel-plate reinforced concrete coupling beams[D]. Hong Kong: The Hong Kong University of Science and Technology, 2004.
[6] BS8110 Part 1, Code of practice for design and construction[S]. London: British Standards Institution, 1997.
[7] ACI 318-02, Building code requirements for structural concrete and commentary[S]. Detroit: American Concrete Institute, 2002.
[8] 张刚.钢板混凝土连梁抗震性能的试验研究[D].北京: 清华大学, 2005.
ZHANG Gang. Experimental study on seismic behavior of steel plate reinforced concrete coupling beams[D].Beijing: Tsinghua University, 2005.
[9] 彭伙水. 钢板-混凝土组合连梁的应用研究[J]. 福建建筑, 2009(3): 33-35.
PENG Huoshui. Research on the application of steel plate-reinforced concrete composite coupling wall-beams[J]. Fujian Architecture & Construction, 2009(3): 33-35.
[10] 沈杰, 葛飞. 钢-混凝土组合连梁抗震性能研究[J]. 四川建材, 2012, 38(4): 56-57.
SHEN Jie, GE Fei. Research on the seismic behavior of steel-concrete composite coupling beams[J]. Sichuan Building Materials, 2012, 38(4): 56-57.
[11] SU R K L, PAM H J, LAM W Y. Effects of shear connectors on plate-reinforced composite coupling beams of short and medium-length spans[J]. Journal of Constructional Steel Research, 2006(62): 178-188.
[12] ATTARD M M, SETUNGE S. Stress-strain relationship of confined and unconfined concrete[J]. ACI Materials Journal, 1996, 93(5): 432-442.
[13] CEB-FIP Model Code 1990[S]. London: Thomas Telford Services Ltd, 1991.
[14] 沈聚敏,王传志,江见鲸. 钢筋混凝土有限元与板壳极限分析[M]. 北京: 清华大学出版社, 1993.
SHEN Jumin, WANG Chuanzhi, JIANG Jianjing. Finite element and limit analysis of plate and shell on reinforced concrete [M]. Beijing: Tsinghua University Press, 1993.
[15] SU R K L, LAM W Y, PAM H J. Behavior of embedded steel plate in composite coupling beams[J]. Journal of Constructional Steel Research, 2008(64): 1112-1128.

备注/Memo

备注/Memo:
收稿日期:2013-12-13 修改稿日期:2014-09-25
基金项目:国家自然科学基金项目(51178380,51108370);教育部长江学者和创新团队发展计划项目(IRT13089)
作者简介:史庆轩(1963-),男,博士,教授,主要从事混凝土结构及抗震研究. E-mail: qingxuanshi@sina.com
更新日期/Last Update: 2015-10-10