[1]孙惠香,许金余,康 婷,等.三维样条小波单元构造及其在地下箱型结构抗爆数值模拟中的应用[J].西安建筑科技大学学报:自然科学版,2014,46(06):816-821,832.[doi:10.15986/j.1006-7930.2014.06.009]
 SUN Huixiang,XU Jinyu,KANG TingQI YongLIU Yuanfei.The three-dimension spline wavelet finite element Construction and application on antiknock of underground box structure[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2014,46(06):816-821,832.[doi:10.15986/j.1006-7930.2014.06.009]
点击复制

三维样条小波单元构造及其在地下箱型结构抗爆数值模拟中的应用()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
46
期数:
2014年06期
页码:
816-821,832
栏目:
出版日期:
2014-12-31

文章信息/Info

Title:
The three-dimension spline wavelet finite element Construction and application on antiknock of underground box structure
文章编号:
1006-7930(2014)06-0816-06
作者:
孙惠香1 许金余1康 婷1齐 勇2刘远飞1
(1. 空军工程大学航空航天工程学院,陕西 西安 710038;2. 空军工程大学营房处,陕西 西安 710044 )
Author(s):
SUN Huixiang1 XU Jinyu1 KANG Ting1QI Yong2LIU Yuanfei1
(1. Aaeronautics and Astronautics Engineering College of Air Force Engineering University , Xi’an 710038, China; 2. The Division of Construction of Air Force Engineering University, Xi’an 710044, China )
关键词:
爆炸荷载地下箱形结构动力响应区间B 样条小波单元构造
Keywords:
blast load underground box structure dynamic action interval B-spline wavelet element construction
DOI:
10.15986/j.1006-7930.2014.06.009
文献标志码:
A
摘要:
由于材料的奇异性和加载的快速性,传统有限元在模拟爆炸荷载作用下地下结构动力响应过程中容易出现数值震荡, 单元划分较多,计算效率低.小波有限元具有多尺度、多分辨率等特性,可以通过提高尺度函数阶数或小波函数的尺度来提高精度.用区间B 样条尺度函数作为插值函数,推导了三维小波转换矩阵,构造了三维区间B 样条小波单元,结合工程实例通过Matlab 软件编程,对爆炸荷载作用地下箱形结构的动力响应进行了数值模拟,通过与ANSYS/LS-DYNA 有限元程序模拟结果进行对比,小波有限元用较少的单元获得了较高的精度,提高了计算效率,避免了数值震荡.
Abstract:
Because of the characteristics of special material and high-speed loading becomes it easy for numerical oscillation to occur in traditional finite element simulation when the underground structure is subject to blasting load. The division of elements is numerous, and the computation inefficient. The wavelets finite element has the characteristics of many dimensions and many resolutions. And the precision can be improved by increasing yardstick of wavelets functions or measurement functions. The three-dimension transition matrix was derived. The new element of three-dimension interval B-spline was constructed using the measurement functions as interpolation function, which was applied on antiknock of underground box structure under blasting load through programming with Matlab software. The result shows that the computation precision is high with little elements and the computation efficiency is improved comprised with common finite element.

参考文献/References:

[1] 何正嘉,陈雪峰,李兵,等. 小波有限元理论及其工程应用[M].北京:科学出版社,2006.

HE Zengjia, CHEN Xuefeng, LI Bing, et al. Wavlet element theory and engineering applications [M]. Beijing: Science press, 2006.

[2] 秦荣.计算结构力学[M].北京:科学出版社,2003.

QIN Rong. Computational structure mechanics [M]. Beijing: Science Press, 2003.

[3] MARSDEN J E, SIROVICH L . A practical guide to splines[M]. Bejing:World Book Publishing Company, 2000.

[4] 陈雪峰,向家伟,何正嘉. 区间B 样条小波薄壳截锥单元构造[J].应用力学学报,2007 (12):599-603.

CHEN Xeufeng, XIANG Jiawei, HE Zhengjia. Construction of thin truncated conical shell elements by inteval B-spline wavelet [J]. Chinese Journal of Applied Mechanics. 2007(12):599-603.

[5] 向家伟,陈雪峰,李兵,等. 一维区间B 样条小波单元的构造研究[J].应用力学学报,2006(6):222-227.

XIANG Jiawei, CHEN Xuefeng, LI Bing, et al. Construction of one-dimensional elements with B-Spline wavelet [J]. Chinese Journal of Applied Mechanics. 2006(6):222-227.

[6] GOSWAMI J C, CHAN A K, CHUI C K. On solving first-kindintegral equations using wavelets on a bounded interval [J]. IEEE Transactions on Antennas and Propagation, 1995, 43(6):614-622.

[7] JIANG Z W. Cubic spline wavelet bases of sobolev spaces and multilevel interpolation [J].Applied and Computational Harmonic Analysis,1996(3):154-163.

[8] 张雄,王天舒.计算动力学[M].北京:清华大学出版社, 2007.

ZHANG Xiong,WANG Tianshu. Computational dynamics [M]. Beijing: Tsinghua University Press, 2007.

[9] 张波,盛和太.ANSYS 有限元数值分析原理与工程应用[M].北京:清华大学出版社, 2005.

ZHANG Bo, SHENG Taihe. ANSYS uumerical analysis principle and engineering application [M]. Beijing: Tsinghua University Press, 2007.

[10] 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1997.

WANG Maocheng, SHAO Min. The finite element principle and uumerical method [M]. Beijing: Tsinghua University Press, 1997.

[11] 孙惠香,许金余,朱国富,等. 爆炸作用下跨度对地下结构破坏形态的影响[J]. 空军工程大学学报,2013, 14(2):90-94.

SUN Huixiang. XU Jinyu, T ZHU Guofu, et al. The influence of span for deep underground arch structure on failure modes under blast loading [J]. Journal of Air Force Engineering University, 2013, 14(2): 90-94.

备注/Memo

备注/Memo:
收稿日期:2014-06-25 修改稿日期:2014-12-04
基金项目:国家自然科学基金项目(51208506,51308540)
作者简介:孙惠香(1975-),女,副教授.主要从事结构工程和防护工程方面的研究.E-mail:sunhx7504@sina.com
更新日期/Last Update: 2015-09-01