[1]徐金兰,宋少花,黄廷林,等.柠檬酸改性Fenton 氧化石油污染土壤的影响因素研究[J].西安建筑科技大学学报:自然科学版,2015,47(04):605-608.[doi:10.15986/j.1006-7930.2015.04.025]
 XU Jinlan,SONG Shaohua,HUANG Tinglin,et al.Study on influence factors of citric acid modified Fenton oxidation of petroleum-contaminated soil[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2015,47(04):605-608.[doi:10.15986/j.1006-7930.2015.04.025]
点击复制

柠檬酸改性Fenton 氧化石油污染土壤的影响因素研究()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
47
期数:
2015年04期
页码:
605-608
栏目:
出版日期:
2015-08-31

文章信息/Info

Title:
Study on influence factors of citric acid modified Fenton oxidation of petroleum-contaminated soil
文章编号:
1006-7930(2015)04-0605-4
作者:
徐金兰宋少花黄廷林雷绒娟崔祎炜黄福娣
西安建筑科技大学环境与市政工程学院,陕西 西安 710055
Author(s):
XU Jinlan SONG Shaohua HUANG Tinglin LEI Rongjuan CUI Yiwei HUANG Fudi
School of Environmental and Municipal Engineering, Xi’an Univ. of Arch. & Tech., Xi’an, 710055, China
关键词:
柠檬酸H2O2 浓度改性Fenton 氧化石油污染土壤H2O2 分次投加
Keywords:
Citric acid H2O2 concentration modified Fenton oxidation petroleum-contaminated soil stepwise addition of H2O2
分类号:
X55
DOI:
10.15986/j.1006-7930.2015.04.025
文献标志码:
A
摘要:
分别在6 个柠檬酸浓度、8 个H2O2 浓度及分次投加H2O2 条件下对2 种石油污染土壤进行了柠檬酸改性Fenton 氧化实验.结果表明:柠檬酸浓度过低时,土壤有机物(SOM)易被氧化,过高时会消耗羟基自由基不利于土壤中石油(TPH)的氧化,得出适宜的柠檬酸浓度为15 mM.在该柠檬酸浓度条件下,提高H2O2 的投加浓度,SOM 氧化率基本不变,提高了H2O2 的利用率.结果表明,土壤油浓度越大,所需投加的H2O2 浓度越高,对于土壤S1(TPH=26.9 g/kg)和土壤S2(TPH=89.7g/kg)而言,适宜的H2O2 浓度分别为1 100mM 和1 700mM.此外,H2O2 分次投加明显提高了柠檬酸改性Fenton 氧化石油污染土壤的效果,对于油浓度大的土壤S2 的效果尤为明显,900 mM 的H2O2 分4 次投加后,TPH 的去除率由一次投加H2O2的22%提高到49%(提高了2.2 倍),与一次投加1 700 mM H2O2 的氧化效果(51%)相当,表明H2O2 分次投加后,H2O2的投量节约了50%.
Abstract:
Two petroleum-contaminated soils were oxidized by citric acid modified Fenton. The effects of six citric acid concentrations, eight H2O2 concentrations and stepwise addition of dosing H2O2 on oxidation of total petroleum hydrocarbon (TPH) in soils were investigated. The results show that it is very important to control the citric acid concentration for oxidation of petroleum-contaminated soil. Soil organic matter (SOM) was susceptible to oxidize to result in low removal of TPH when the citric acid concentration was lower or higher than 15 mM. So the suitable concentration of citric acid was 15 mM at 5.8 mM of iron. For citric acid modified Fenton, utilization of H2O2 is highly efficient because the removal efficiency of SOM is low when H2O2 concentration increase. For soil S1 (TPH=26.9 g/kg) the suitable concentration of H2O2 was 1100 mM while the suitable concentration of H2O2 was 1700 mM for heavy oil contaminated soil S2 (TPH=89.7 g/kg). In addition, the removal efficiency of TPH increased obviously in two soils by stepwise addition of dosing H2O2. For heavily polluted soil S2, after 4 stepwise addition of dosing 900 mM H2O2, the removal efficiency of TPH was increased 2.2 times, which was equal to TPH removal (51%) after a pluse addition of 1700 mM H2O2 . Therefore, the stepwise addition of dosing H2O2 is the best way for heavy oil polluted soil to oxidize crude oil as 50% of H2O2 dosage is decreased.

参考文献/References:

[1] 曹辉, 郭晶, 马魁堂, 等. 石油污染土壤治理研究进展[J]. 现代农业科技, 2011(23): 309-310.
CAO Hui, GUO Jing, MA Kuitang, et al. Research progress of petroleum contaminated soil treatment [J].Modern Agricultural Science and Technology, 2011(23): 309-310.
[2] 齐永强, 王红旗. 微生物处理土壤石油污染的研究进展[J]. 上海环境科学, 2002, 21(3): 177-188.
QI Yongqiang, WANG Hongqi. Study progress on bioremediation of soil oil pollution [J].Shanghai Environmental Science, 2002, 21(3): 177-188.
[3] 丁克强, 孙铁珩, 李培军. 石油污染土壤的生物修复技术[J]. 生态学杂志, 2000, 19(2): 50-55.
DING Keqiang, SUN Tieheng, LI Peijun. Bioremediation of the soil contaminated by petroleum hydrocarbons [J].Chinese Journal of Ecology, 2000, 19(2): 50-55.
[4] KAO C M, PROSSER J. Evaluation of natural attenuation rate at a gasoline spill site [J]. Journal of Hazardous Materials, 2001, 82(3): 275-289.
[5] 刘晓艳, 李兴伟, 纪学雁, 等. 油田城市地表土壤石油污染特点及其防治对策[J]. 国土与自然资源研究,2004(4): 68-69.
LIU Xiaoyan, LI Xingwei, JI Xueyan, et al. The measures of precaution-treatment for contaminated soil at oil field ground [J]. Territory & Natural Resources Study, 2004(4):68-69.

[6] 燕启社, 孙红文. Fenton氧化对土壤有机质及其吸附性能的影响[J]. 农业环境科学学报, 2006, 25(2): 412-417.
YAN Qishe, SUN Hongwen. Influence of Fenton oxidation on soil organic matter and its sorption characteristics [J]. Journal of Agro-Environment Science,2006, 25(2): 412-417.
[7] 赵丹, 廖晓勇, 阎秀兰, 等. 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32(3):857-863.
ZHAO Dan, LIAO Xiaoyong, YAN Xiulan, et al. Chemical oxidants for remediation of soils contaminated with polycyclic aromatic hydrocarbons at a coking site [J].Environmental Science, 2011, 32(3): 857-863.
[8] CHEN C T, TAFURI A N, RAHMAN M, et al. Chemical oxidation treatment of petroleum contaminated soil using Fenton’s reagent [J]. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, 1998, 33(6): 987-1008.
[9] ITRC (Interstate Technology & Regulatory Council). Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, Second Edition [R]. Interstate Technology & Regulatory Cooperation Work Group, Washington, D C. 2005.
[10] 纪录, 张晖. 原位化学氧化在土壤和地下水修复中的研究进展[J]. 环境污染治理技术与设备, 2003,4(6):37-42.
JI Lu, ZHANG Hui. The progress in soil and groundwater remediation by in situ chemical oxidation [J]. Techniques and Equipment for Environmental Pollution Control, 2003, 4(6): 37-42.
[11] 崔英杰, 杨世迎, 王萍, 等. Fenton 原位化学氧化法修复有机污染土壤和地下水的研究[J]. 化学进展, 2008,20(7/8): 1196-1201.
CUI Yingjie, YANG Shiying, WANG Ping, et al. Organically polluted soil and groundwater remediation by in situ Fenton oxidation [J]. Progress in Chemistry, 2008,20(7/8): 1196-1201.
[12] SEOL Y, JAVANDEL I. Citric acid-modified Fenton’s reaction for the oxidation of chlorinated ethylenes in soil solution systems [J]. Chemosphere, 2008(72): 537-542.
[13] VENNY, GAN S, NG H K. Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils [J]. Chemical Engineering Journal, 2012(180): 1-8.
[14] XU J, PANCARS T, GROTENHUIS T. Chemical oxidation of cable insulating oil contaminated soil [J].Chemosphere, 2011, 84(2): 272-277.
[15] SHERWOOD M K, CASSIDY D P. Modified Fenton oxidation of diesel fuel in arctic soils rich in organic matter and iron [J]. Chemosphere, 2014 (113): 56-61.
[16] TSAI T T, KAO C M. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag [J]. Journal of Hazardous Materials,2009, 170(1): 466-472.
[17] WATTS R J, STANTON P C, HOWSA WKENG J, et al. Mineralization of absorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide [J]. Water Research, 2002, 36(17): 4283-4292.
[18] WALLING C. Fenton’s reagent revisited [J]. Accounts of Chemical Research, 1975, 8(4): 125-131.
[19] CHRISTENSEN H, SEHESTED K, CORFITZE N H. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures [J]. The Journal of Physical Chemistry, 1982, 86(9): 1588-1590.

备注/Memo

备注/Memo:
收稿日期:2015-03-25 修改稿日期:2015-07-31
基金项目:国家自然科学基金项目(51378413;51208416)
作者简介:徐金兰(1973-),女,教授,博导,主要研究方向为石油污染土壤修复. E-mail:xujinlan@xauat.edu.cn
更新日期/Last Update: 2015-10-31