[1]谌 磊,杨俊芬.加权平均厚度法计算变厚度钢壳体在均匀外部压力作用下的屈曲应力[J].西安建筑科技大学学报:自然版,2016,48(01):82-88.[doi:10.15986/j.1006-7930.2016.01.014]
 CHEN Lei,YANG Junfen.Evaluation of critical buckling pressure for cylindrical shells with changing walls under uniform external pressure using weighted smeared wall method[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(01):82-88.[doi:10.15986/j.1006-7930.2016.01.014]
点击复制

加权平均厚度法计算变厚度钢壳体在均匀外部压力作用下的屈曲应力()
分享到:

西安建筑科技大学学报:自然版[ISSN:1006-7930/CN:61-1295/TU]

卷:
48
期数:
2016年01期
页码:
82-88
栏目:
出版日期:
2016-02-28

文章信息/Info

Title:
Evaluation of critical buckling pressure for cylindrical shells with changing walls under uniform external pressure using weighted smeared wall method
文章编号:
1006-7930(2016)01-0082-07
作者:
谌 磊1杨俊芬2
1. 河南省电力勘测设计院,河南 郑州 450007;2. 西安建筑科技大学土木工程学院,陕西 西安 710055
Author(s):
 CHEN Lei1 YANG Junfen2
 1. Henan Electric Power Survey&Design Institute, Zhengzhou 450007 China; 2. School of Civil Engineering, Xi′an Univ. of Arch. & Tech., Xi′an 710055 China
关键词:
不均匀厚度圆柱壳体加权平均厚度法筒仓烟囱均匀外部压力屈曲
Keywords:
 stepped wall cylinders weighted smeared wall method silos chimneys external pressure buckling
分类号:
TU33+3
DOI:
10.15986/j.1006-7930.2016.01.014
文献标志码:
A
摘要:
不均匀厚度钢圆柱壳体在工程实践中有着广泛的应用,例如工程中垂直安放的各种筒仓结构,高耸钢烟囱结构等.整个壳体结构由若干均匀厚度的短圆柱钢板拼接而成,由于结构下部的应力通常远大于上部,整个结构的壁厚从上部到下部呈阶梯式变化.这种结构在空置或部分空置时,在外部压力的作用下易发生屈曲破坏.由于结构复杂的厚度变化形式,屈曲模态可能有多种形式,如何准确的判断壳体的临界屈曲模态是设计此类结构时的一个难题.一种新的设计方法“加权平均厚度方法”由作者提出,首先简单介绍了这种方法的理论推导过程,进而利用实例阐述了如何利用这种方法对不同厚度改变形式的圆柱壳体的临界屈曲应力进行快速准确的评估.利用有限单元法对加权平均厚度法所得结果进行了验证,结果表明加权平均厚度法相比有限元精确结果略微保守,误差在6%以内.
Abstract:
Steel cylindrical shells of significant size are widely used in practical engineering, as silos and chimneys in electric power engineering. These structures are constructed from many short cylindrical shells of different thickness which is changed in stepwise type because the stress resultants are much larger at lower levels. Such shells are very susceptible to buckling under external pressure when empty or partially filled, but the buckling mode may involve various types due to the complex changes in the shell thickness. To identify the accurate buckling mode of the shell is a critical problem in the design process. A new method, weighted smeared wall method which determines the critical buckling resistance of such shells was proposed by the author. This paper therefore first introduces the new method and its the theoretical background with practical examples used to demonstrate how this method helps to produce rapid, safe assessments of cylindrical shells with a wide range of patterns of wall thickness changes. The finite element method was used to verify the effectiveness and accuracy of the weighted smeared wall method. The results indicate that the weighted smeared wall method is conservative compared with accurate finite element results and the maximum error is smaller than 6%.

参考文献/References:

[1] RESINGER F, GREINER R. Zum Beulverhalten von Kreiszylinderschalen mit abgestufter Wanddicke unter Manteldruck[J]. Stahlbau, 1974, 43: 182-187.
[2] RESINGER, F, GREINER R. Praktische beulberechnung oberirdischer zylindrischer tankbauwerke für unterdruck [J]. Stahlbau, 1976, 45: 10-15.
[3] GREINER R. Buckling of cylindrical shells with stepped wall thickness under wind load[J].Der Stahlbau, 1981,50(6): 176-179.
[4] Eurocode 3: Design of steel structures, Part 1.6 Strength and Stability of shell structures: EN 1993-1-6[S].Brussels: CEN, 2007.
[5] ROTTER J M, SCHMIDT H. European recommendations for steel construction: buckling of shells[M].5th ed, European Convention for Constructional Steelwork, Brussels, 2008.
[6] BATDORF S B. A simplified method of elastic stability analysis for thin cylindrical shells [J]. NACA TN, 1947,874: 285-301.
[7] BRUSH D O, ALMROTH B O. Buckling of Bars, Plates and Shells [M]. New York: McGraw-Hill, 1975.
[8] DONNELL L.H. Beams, Plates and Shells [M]. NewYork: McGraw Hill, 1976.
[9] EBNER H. Theoretical and experimental investigations on buckling of cylindrical tanks subjected to external pressure [J]. Stahlbau, 1952, 21: 153-159.
[10] YAMAKI N. Elastic stability of circular cylindrical shells [M]. Amsterdam: North-Holland; 1984.
[11] SCHNELL W. Einfluss der Randverwölbung auf die Beulwerte von Zylinderschalen unter Manteldruck [J]. Stahlbau, 1965, 34: 187-190.
[12] GREINER R, Rotter J M. Cylindrical shells of stepwise variable wall thickness. In: Rotter J.M. and Schmidt H.,editors. Stability of Steel Shells: European Design Recommendations [M]. Brussels: European Convention for Constructional Steelwork, 2008.
[13] DIN18800 Steel Structures: Stability, Buckling of Shells [M]. Berlin: Deutsches Institut fuer Normung, 1990.
[14] TRAHAIR N S, ABEL A, ANSOURIAN P, et al. Structural design of steel bins for bulk solids [R]. Sydney: Australian Institute of Steel Construction, 1983.
[15] Welded Tanks for Oil Storage: API STD 650 [S]. American: Petroleum Institute, 2007.

备注/Memo

备注/Memo:
收稿日期:2014-02-26 修改稿日期:2015-08-15
基金项目:陕西省教育厅科学研究计划自然科学专项项目(2013JK0977);国家留学基金委与爱丁堡大学博士留学基金项目
作者简介:谌磊(1982―),男,博士,高级工程师,主要研究方向为钢结构稳定、壳体结构非线性稳定. E-mail:chenleihe2008@163.com
更新日期/Last Update: 2016-04-02