[1]孙芳锦,吕艳卓,冯旭.大跨度悬挑屋盖风驱雨压分布特性的数值模拟研究[J].西安建筑科技大学学报(自然科学版),2017,49(04):470-477.[doi:10.15986/j.1006-7930.2017.04.002]
 SUN Fangji,L Yanzhuo,FENG Xu.Study on wind-driven rain pressure distribution characteristics of large span cantilever roof[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(04):470-477.[doi:10.15986/j.1006-7930.2017.04.002]
点击复制

大跨度悬挑屋盖风驱雨压分布特性的数值模拟研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
49
期数:
2017年04期
页码:
470-477
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Study on wind-driven rain pressure distribution characteristics of large span cantilever roof
文章编号:
1006-7930(2017)04-0470-08
作者:
孙芳锦1吕艳卓1冯旭2
(1. 辽宁工程技术大学 建筑工程学院,辽宁 阜新 123000 ;2. 五冶集团上海有限公司,上海 201900 )
Author(s):
SUN Fangji1 L Yanzhuo1 FENG Xu2
(1. College of Civil Engineering and Architecture, Liaoning Technical University, Fuxin 123000, China 2. Mcc5 Group Shanghai Co. Ltd, Shanghai 201900, China)
关键词:
大跨度挑檐屋盖风驱雨欧拉-欧拉多相流模型压力分布特性
Keywords:
long-span cantilever roof wind-driven rain Euler - Euler of multiphase flow model pressure distribution characteristics
分类号:
TU973
DOI:
10.15986/j.1006-7930.2017.04.002
文献标志码:
A
摘要:
目前大跨度悬挑屋盖设计通常忽略结构的风驱雨压,而风驱雨压是造成该类结构破坏的重要原因之一,为此研究大跨度悬挑结构表面风驱雨压的分布规律.为克服欧拉-拉格朗日多相流模型只能得到物理层面相对值的缺点,采用欧拉-欧拉多相流模型,研究风速、雨强变化条件下,悬挑屋盖表面风驱雨平均压力分布规律,并与单独风荷载作用时的风压分布进行了对比;计算了风驱雨条件下屋盖上下表面的极限体型系数.总结分析了大跨度悬挑屋盖表面风驱雨压分布特征和规律.研究结果表明:悬挑屋盖的风驱雨压较单独风作用时增幅明显,压力增大1.1-2.18倍;极限暴雨雨强工况下较中度暴雨工况下压力增大1.07-1.24倍.因此建议在进行大跨度悬挑屋盖设计时应考虑风驱雨效应,适当增大安全指数
Abstract:
Currently long -span cantilever roof design usually ignores wind-driven rain pressure distribution characteristics of structure, which is one of the most important causes for the destruction of this type of structure. Pressure distribution on the surface of long -span cantilever structure under co-action of wind and rain is studied. Euler -Euler multiphase flow model is employed to overcome the disadvantage of only getting physical relative value by Euler-Lagrange of multiphase flow model. The average wind -driven rain pressure on the top surface of cantilever roof with different wind speed and wind rainfall intensity is studied, and is compared with wind pressure coefficients under wind loading. Limit coefficients on the top and bottom surface of roof under co -action of wind and rain are calculated. Wind -driven rain pressure distribution characteristics on the surface of long-span cantilever structure are summarized. The results show that the pressure of cantilever roof increase under combined loads of wind and rain increases 1 .1 to 2.18 times compared with that under sole wind loading . The pressure increases 1 .07 to 1.24 times at limit rain storm compared with that of medium rain storm. Safety index is suggested to increase appropriately in the wind -driven rain design of long-span cantilever roof

参考文献/References:

References

[1]葛学礼.浙江苍南县“桑美”台风建筑灾害与抗风技术措施[J].工程质量,2006,46(2):18-22.

GE Xueli. Building disaster caused by Saomaityphoon in Cangnan County, Zhejiang Province as well as the technical measure for anti -typhoon[J].Quality of Civil Engineering and Construction,2006,46(2):18-22 .

[2]付国宏.低层房屋风荷载特性及抗台风设计研究[D].杭州:浙江大学,2002.

FU Guohong. On the wind load characteristics and wind resistant design of low -rise buildings[D]. Hangzhou:Zhejiang University,2002 .

[3] BLOCKEN B,CARMELIET J . A review of wind -driven rain research in building science [J]. Journal of Wind Engineering and Industrial Aerodynamics.2004. 92 ( 13) :1079-1130.

[4]KUBILAY A, DEROMED, BLOCKEN B. Wind -driven rain on two parallel wide buildings: Field measurements and CFD simulations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015,146(9):11-28.

[5] CHOI E C C. Simulation of wind -driven rain around a building[J]. J Wind Eng Ind Aerod 1993 ;46-7:721-729.

[6] CHOI E C C. Parameters affecting the intensity of wind -driven rain on the front face of a building[J]. J Wind Eng Ind Aerod 1994, 53(1/2):1 -17.

[7] CHOI E C C. Numerical modeling of gust effect on wind -driven rain [J]. Wind Eng . Indus . Aerodyn ,1997,72:107-116.

[8]BLOCKEN B, CARMELIET J. Overview of three state -of-the-art wind-driven rain assessment models and comparison based on model theory[J]. Build Environ 2010 ,45:691-703.

[9] ABUKU M, BLOCKEN B, NORE K . On the validity of numerical wind -driven rain simulation on a rectangular low-rise building under various oblique winds[J]. Build Environ 2009 ,44(3):621-632.

[10]BRIGGEN P M, BLOCKEN B, SCHELLEN H L. Wind -driven rain on the facade of a monumental tower: numerical simulation, full-scale validation and sensitivity analysis[J]. Build Environ 2009 ;44(8):1675-1690.

[11]HUANG S H, LI Q S. Numerical simulations of wind -driven rain on building envelopes based on Eulerian multiphase model [J]. J Wind Eng Ind Aerodyn, 2010,98:843-857.

[12]SANKARAN R, PATERSON DA. Computation of rain falling on a tall rectangular building [J]. Wind Eng .Ind.Aerodyn,1997,72:127-136.

[13]吴小平.低层房屋风雨作用效应的数值研究[D].杭州:浙江大学,2008.

WU Xiaoping . Numerical study of wind -rain Interaction effect on low-rise buildings [D].Hangzhou: Zhejiang University , 2008

[14]张丽.土楼夯土墙风雨撞击荷载研究[D].厦门:华侨大学,2012.

ZHANG Li. The research of the impact load of rain induced wind on rammed earth wall of earth building [D].Xiamen: Huaqiao University, 2012 .

[15]郑永鑫.低矮建筑风驱雨作用的数值模拟与实测方法研究[D].杭州:浙江大学,2012.

ZHENG Yongxin. Numerical and site experimental study for wind -driven rain on low-rise buildings [D]. Hangzhou: Zhejiang University , 2012 .

[16]KUBILAY A, DEROME D, BLOCKEN B. CFD simulation and validation of wind -drivenrain on a building facade with an Eulerian multiphase model [J]. Building and Environment,2013, 61: 69-81.

[17]王辉,李新俊,潘竹.建筑(群)立面风驱雨压荷载的数值模拟研究[J].土木工程学报,2014,47(9):94-100.

WANG Hui, LI Xinjun, PAN Zhu. Numerical and site experimental study for wind and rain effects on low -rise buildings[J]. China Civil Engineering Journal ,2014,47(9):94-100.

[18]韩涵.建筑(群)立面风驱雨分布特性的研究[D].合肥:合肥工业大学,2013.

相似文献/References:

[1]海振.上海地区风驱雨气候特征分析穆海振[J].西安建筑科技大学学报(自然科学版),2019,51(01):128.[doi:10.15986/j.1006-7930.2019.01.020]
 Mu Haizhen.Climatic characteristics of wind driven rain of Shanghai[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):128.[doi:10.15986/j.1006-7930.2019.01.020]

备注/Memo

备注/Memo:
收稿日期:2016-10-09修改稿日期:2017-07-15
基金项目:国家自然科学基金(51108345);东南大学混凝土及预应力混凝土结构教育部重点实验室开放课题;同济大学土木工程防灾国家重点实验室开放基金(SLDRCE-MB-04);辽宁省教育厅基金一般项目(LJYL030);大学生创新训练项目(201610147000066)
第一作者:孙芳锦(1981-),女,教授,博士,博士生导师,主要从事结构防灾减灾与抗风等方面研究. E-mail: e_dm@163.com
更新日期/Last Update: 2017-09-11