[1]中华人民共和国国家统计局,中国能源统计年鉴[M].北京:中国统计出版社.China Bureau of Statistics. China energy statistics yearbook[M]. Beijing: China Statistical Publishing House. 2008.
[2]何鸣.重庆某高校学生宿舍空调工况热环境研究[D].重庆:重庆大学,2014.
HE Ming. Research on air-conditioned condition Indoor thermal environment of university students’ dormitory in chongqing[D]. Chongqing: Chongqing University.2014.
[3]樊丽军.基于多元线性回归模型的建筑能耗预测与建筑节能分析[J].湘潭大学自然科学学报. 2016, 38(1): 123-126.
FAN Lijun. Prediction of building energy consumption and analysis of building energy saving based on multivariate linear regression model[J]. Journal of natural science Xiangtan university. 2016, 38(1): 123-126.
[4]王琳,肖益民.重庆市高校学生宿舍夏季热湿环境与能耗现状调查研究[J].制冷与空调, 2009, 10(23):36-41.
WANG Ling, XIAO Yimin. Study on dormitory indoor environment and energy consumption in chongqing[J]. Refrigeration and Air Conditioning. 2009, 10(23):36-41.
[5]张玲,罗多,李进,等.基于上海地区高校学生宿舍生活热水能耗现状分析及展望[J].建筑节能, 2012,40(8):31-38.
ZHANG Ling, LUO Duo, LI Jin, et al. Energy consumption of hot water system for campus dormitory in shanghai[J]. Building Energy Conservation. 2012,40(8):31-38.
[6]ZHANG Yufeng, CHEN Huimei, MENG Qinglin. Thermal comfort in buildings with split airconditioners in hothumid area of China[J].Building and Environment. 2013,64(6): 213-224.
[7]周晨,冯宇东,肖匡心, 等.基于多元线性回归模型的东北地区需水量分析[J].数学的实践与认识, 2014,44(1):118-123.
ZHOU Chen, FENG Yudong, XIAO Kuangxin, et al. Research on water requirement in northeast area based on multiple linear regression Model[J]. Mathematics IN Practice And Theory. 2014,44(1):118-123.
[8]张文彤,董伟.SPSS统计分析高级教程[M].北京:高等教育出版社,2013.
ZHANG Wentong, DONG Wei. Advanced textbook for SPSS statistical analysis[M]. Beijing. Higher Education Press,2013.
[9]骆方,刘红云,黄崑.SPSS数据统计与分析[M].北京:清华大学出版社,2011.
LUO Fang, LIU Hongyun, HANG Kun. SPSS Statistical Analysis[M]. Beijing:Tsinghua University Press. 2011.
[10]江亿.DeST用户使用手册[K].北京:清华大学建筑技术科学系,2013.
JING Yi. DeST User Manual[K]. Beijing: Department of Building Technology and Science, School of Architecture, Tsinghua University, 2013.
[11]TARDIOLI G, KERRIGAN R, OATES M, et al. Data driven approaches for prediction of building energy consumption at urban level[J]. Engery Procedia, 2015, 78:3378-3383.
[12]MATHEW P. A., DUNN L.N., SOHN M.D., et al. Big-data for building energy performance: lessons from assembling a very large national database of building energy use[J]. Appl Energy, 2015,140:85-93.
[13]WEI L, TIAN W, SILVA E.A, et al. Comparative study on machine learning for urban building energy analysis[J]. Procedia Engineering, 2015,121:285-292.
[14]杨松.建筑环境中基于既有数据和能耗模型的敏感性分析[D].天津:天津大学,2017.
YANG Song. Sensitivity analysis in building environment based on existing data and energy model[D]. Tianjin: Tianjin University.2017.