[1]海振.上海地区风驱雨气候特征分析穆海振[J].西安建筑科技大学学报(自然科学版),2019,51(01):128-133,139.[doi:10.15986/j.1006-7930.2019.01.020]
 Mu Haizhen.Climatic characteristics of wind driven rain of Shanghai[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(01):128-133,139.[doi:10.15986/j.1006-7930.2019.01.020]
点击复制

上海地区风驱雨气候特征分析穆海振()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年01期
页码:
128-133,139
栏目:
出版日期:
2019-02-28

文章信息/Info

Title:
Climatic characteristics of wind driven rain of Shanghai
文章编号:
1006-7930(2019)01-0128-06
作者:
海振
(上海市气象信息与技术支持中心,上海 200030)
Author(s):
Mu Haizhen
(Shanghai Meteorological Information and Technology Support Center, Shanghai 200030, China)
关键词:
上海风驱雨气候特征建筑设计
Keywords:
Shanghai wind driven rain climate characteristics architectural design
分类号:
TU14;P49
DOI:
10.15986/j.1006-7930.2019.01.020
文献标志码:
A
摘要:
风驱雨是建筑物抗风雨设计需要考虑的主要因素之一.利用2006-2015年上海宝山气象站逐时降水、风速和风向观测数据,分析了上海地区降水、风的气候背景和降雨时风环境特征,计算了年风驱雨量指数和风驱雨荷载指数,评估了不同时间分辨率数据对指数计算值影响,所得主要结论如下:1)宝山站小时出现降水的气候频率接近10%,超过99%的样本小时降水量小于5 mm,降雨集中时段为夏季.宝山站全年盛行风向依次为东北、东和东南,其中东北风多出现在秋季和冬季,东和东南风多出现在春季和夏季.2)宝山站出现降雨时的风环境与全体样本统计值有明显差异,出现降雨和极端降雨时的主要风向均为东北和东,且平均风速较全体样本平均值明显偏大.3)宝山站的年风驱雨指数为3.8 m2·s-1,风驱雨荷载总体呈现东北方位大、西南方位小的特点,其中东北和东两个方位的风驱雨荷载指数年均值分别为413.0 mm和 388.3 mm,西南方位为103.7 mm.4)基于日值、月值和年值统计数据计算得到的年风驱雨量指数值均较基准值(基于小时数据)偏低,其中年值偏低最多,日值最少.相关研究成果可望为上海的建筑设计和城市规划等工作提供参考
Abstract:
Wind driven rain (WDR) is one of the main factors to be considered in architectural design. Using hourly precipitation, wind speed and direction data (2006-2015) of Shanghai Baoshan weather station, the climate characteristics of the precipitation, wind and wind environment during rain events were analyzed, annual WDR index and WDR load index were obtained, and the impact of different time resolution data source on index calculation were evaluated in this paper. The main conclusions are as follows: 1) The frequency of Baoshan station hourly rainfall occurrence is close to 10%, more than 99% of the sample hours ’ precipitation is less than 5 mm, and the main season for rainfall is summer. The annual prevailing wind direction at Baoshan station is northeast, east and southeast, with seasonal variation of northeast during autumn & winter and east or southeast during spring & summer. 2) Wind environment during rainfall events of Baoshan station is obviously different to all samples ’ statistics: the governing wind directions during rainfall events are northeast and east, and the average wind speed is greater than all the samples ’ result. 3) The WDR index of Baoshan station is 3.8 m2·s-1. WDR load index of northeast and east is largest and southwest is smallest, the WDR load index of northeast (east) is 413.0 mm (388.3 mm), while the southwest is 103.7 mm. 4) The WDR index calculated through daily, monthly and annual data were smaller than the baseline value (based on hourly data) with largest range of yearly method and smallest range of daily method. The research results obtained in this paper will provide reference for the architectural design and urban planning of Shanghai.

参考文献/References:

[1]BORIS S, 邹耀芳. 风和降雨强度对降雨收集的影响——各国雨量器与标准坑式雨量器的国际对比[J]. 气象科技,1988(06):88-92+97.

BORIS S, ZOU Yaofang. Influence of wind and rainfall density on precipitation measurement—International comparison of rainfall gauges and standard pit gauges in different countries. Meteorological Science and Technology, 1988(6): 88-92+97.

[2]任芝花, 李伟, 雷勇,等. 降水测量对比试验及其主要结果[J]. 气象,2007(10):96-101.

REN Zhihua, LI Wei, LEI Yong, et al. A comparison experiment of solid precipitation measurement and its primary results. Meteorological Monthly, 2007(10):96-101.

[3]郑祚芳, 任国玉. 风场变形误差对北京降水记录及变化趋势的影响[J]. 水科学进展, 2017(05):1-9.

ZHENG Zuofang, REN Guoyu. Effects of gauge under-catch on precipitation observation and long-term trend estimates in Beijing area. Advance in Water Science, 2017(05):1-9.

[4]MARZEN M, ISERLOH T, LIMA J L M P D, et al. Impact of severe rain storms on soil erosion: experimental evaluation of wind-driven rain and its implications for natural hazard management [J]. Science of the Total Environment, 2017, 590/591:502.

[5]花长城, 彭兴黔, 吴仁伟,等. 福建土楼夯土墙风驱雨侵蚀损伤预测研究[J]. 自然资源学报,2012,27(06):1068-1074.

HUA Changcheng, PENG Xingqian, WU Renwei, et al. Predicted research of the erosion damage of the rammed earth wall of fujian earth buildings caused by the wind-driven rain [J]. Journal of Natural Resources, 2012(06):1068-1074.

[6]蔡丽君, 王国栋. 风矢量对坡面降雨动能分布的影响[J]. 中国农业大学学报,2003(06):15-17.

CAI Lijun, WANG Guodong. The effects of the wind vector on the distribution of raindrop kinetic energy over sloping field [J]. Journal of China Agricultural University, 2003(06):15-17.

[7]孙芳锦, 吕艳卓, 冯旭. 大跨度悬挑屋盖风驱雨压分布特性的数值模拟研究[J]. 西安建筑科技大学学报(自然科学版),2017(04):470-477.

SUN Fangjin, L Yanzhuo, FENG Xu. Study on wind-driven rain pressure distribution characteristics of large span cantilever roof [J]. J. Xi′an Univ. of Arch.&Tech. (Natural Science Edition), 2017(04):470-477.

[8]王辉, 陈雨生, 曹洪明. 建筑立面风驱雨气动干扰特性的数值模拟研究[J]. 应用力学学报,2017(02):297-303+405.

WANG Hui, CHEN Yusheng, CAO Hongming. Numerical simulation study on characteristics of aerodynamic interference on wind-driven rain on building facades [J]. Chinese Journal of Applied Mechanics, 2017(2):297-303+405.

[9]王辉, 邓羊晨, 易兵兵, 等. 湿下击暴流作用下建筑立面雨压分布特性的数值分析[J]. 应用力学学报, 2016 (1):99-104+184.

WANG Hui, DENG Yangchen, YI Bingbing, et al. Numerical analysis of distribution characteristics of rain pressure on building facade under downburst accompanied with rain [J]. Chinese Journal of Applied Mechanics, 2016 (1):99-104+184.

[10]杨俊涛, 楼文娟. 风驱雨CFD模拟及平均雨荷载计算方法研究[J]. 空气动力学学报,2011,29(5):600-606.

YANG Juntao, LOU Wenjuan. Research on wind driven rain CFD simulation and method calculating mean rain load [J]. ACTA Aerodynamica Sinica, 2011(5): 600-606.

[11]LACY R E. Driving rain at Garston, United Kingdom[R]. Report presented to CIB commission W-11, CIB No. 4, 1964. p. 1-4.

[12]LACY R E. An index of driving rain[J]. Meteorol. Mag. 1962, 91: 177-184.

[13]LACY R E. An index of exposure to driving rain [J]. Building Res. Station Digest 1971, (127):1-8.

[14]BLOCKEN B, CARMELIET J. A review of wind-driven rain research in building science [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2004, 92:1079-1130.

[15]RYDOCK J P, LIS K R, FRLAND E J, et al. A driving rain exposure index for Norway [J]. Building & Environment, 2005(11):1450-1458.

[16]PREZ-BELLA J M, DOMNGUEZ-HERNNDEZ J, RODRGUEZ-SORIA B, et al. Estimation of the exposure of buildings to driving rain in Spain from daily wind and rain data [J]. Building & Environment, 2012, 57:259-270.

[17]DOMNGUEZ-HERNNDEZ J, PREZ-BELLA J M, ALONSO-MARTNEZ M, et al. Assessment of water penetration risk in building facades throughout Brazil, Building Research & Information, 2016, 45: 492-507.

[18]British Standards Institution. British Standards, BS 8104: Code of practice for assessing exposure of walls to wind driven rain[S]. London, UK: BSI, 1992.

[19]British Standards Institution. ISO 15927-3:2009 Hygrothermal performance of buildings-Calculation and presentation of climatic data -- Part 3: Calculation of a driving rain index for vertical surfaces from hourly wind and rain data[S]. London,UK: BSI, 2009.

[20]住房和城乡建设部. JGJ/T235-2011: 建筑外墙防水技术规程 [S]. 北京:中国建筑工业出版社, 2001年.

Ministry of Housing and Urban-Rural Construction. JGJ/T235-2011: Technical Regulations for Waterproofing of Building Exterior Wall [S]. Beijing: China Construction Industry Press, 2001.

[21]王辉, 陈雨生, 曹洪明,等. 组合布局对建筑立面风驱雨分布影响特性的数值分析[J]. 土木工程学报,2016,49(12):27-34.

WANG Hui, CHEN Yusheng, CAO Hongming, et al. Numerical simulation for influence of combination layout on wind-driven rain distribution on building facades [J]. China Civil Engineering Journal, 2016(12):27-34.

[22]胡正生, 王辉, 孙建平, 等. 高层建筑迎风面风驱雨分布预测模型适用性的数值研究[G]//工程防震减灾新技术、新进展和新应用(下). 合肥:合肥工业大学出版社, 2016:811-818.

HU Zhengsheng, WANG Hui, SUN Jianping, et al. Numerical simulation on suitability of the semi-empirical model on wind-driven rain distribution on tall building windwards facades [J]//New technology, development & application in engineering for seismic prevention and disaster mitigation. Hefei: Hefei University of Technology Press, 2016:811-818.

[23]严济远, 徐家良. 上海气候[M]. 北京:气象出版社, 1996:1-10.

YAN Jiyuan, XU Jialiang. Shanghai Climate [M]. Beijing: Meteorological Press, 1996:1-10.

[24]中国气象局. 地面气象观测规范 [M]. 北京:气象出版社, 2003.

China Metrological Administration. Specifications for surface meteorological observation [M]. Beijing: Meteorological Press, 2003.

[25]LACY R E. Climate and Building in Britain [M]. London, UK: Her Majesty’s Stationery Office,1977.

[26]American Society of Civil Engineers. ASCE7-10: Minimum Design Load for Buildings and Other Structures[S]. Virginia, USA: American Society of Civil Engineers, 2013.

[27]PREZ-BELLA J M, DOMINGUEZ-HERNANDEZ J, CANO-SUNN E, et al. On the significance of the climate-dataset time resolution in characterising wind-driven rain and simultaneous wind pressure. Part I: scalar approach[J]. Stochastic Environmental Research and Risk Assessment, 2018(6): 1783-1797.

相似文献/References:

[1]孙芳锦,吕艳卓,冯旭.大跨度悬挑屋盖风驱雨压分布特性的数值模拟研究[J].西安建筑科技大学学报(自然科学版),2017,49(04):470.[doi:10.15986/j.1006-7930.2017.04.002]
 SUN Fangji,L Yanzhuo,FENG Xu.Study on wind-driven rain pressure distribution characteristics of large span cantilever roof[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(01):470.[doi:10.15986/j.1006-7930.2017.04.002]

备注/Memo

备注/Memo:
收稿日期:2018-02-20
修改稿日期:2019-01-15
基金项目:国家重点研发计划项目(2017YFC1501701 );公益性气象行业科研专项(201306030、201406038)
第一作者:穆海振(1974-),男,高级工程师,主要从事应用气象学研究.E-mail:muhz@hotmail.com
更新日期/Last Update: 2019-03-05