[1]黄振宇,隋莉莉,王 芳.超轻质高延性水泥基材料力学性能研究[J].西安建筑科技大学学报(自然科学版),2019,51(02):223-0229.[doi:10.15986/j.1006-7930.2019.02.011]
 HUANG Zhengyu,SUI Lili,WANG Fang.Mechanical properties of ultra-lightweight high ductility cement composites[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(02):223-0229.[doi:10.15986/j.1006-7930.2019.02.011]
点击复制

超轻质高延性水泥基材料力学性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年02期
页码:
223-0229
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Mechanical properties of ultra-lightweight high ductility cement composites
文章编号:
1006-7930(2019)02-0223-07
作者:
黄振宇12隋莉莉12王 芳1
(1.深圳大学 土木工程学院,广东 深圳518060;2.广东省滨海土木工程耐久性重点实验室,广东 深圳518060)
Author(s):
HUANG Zhengyu12 SUI Lili 12 WANG Fang 1
(1.Department of Civil Engineering, Shenzhen University, Guangdong Shenzhen 518000,China 2.Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Guangdong Shenzhen 518060,China)
关键词:
轻质混凝土应变强化超轻质高延性空心微珠
Keywords:
lightweight concrete strain hardening ultra-lightweight high ductility hollow spheres
分类号:
TU501
DOI:
10.15986/j.1006-7930.2019.02.011
文献标志码:
A
摘要:
采用三种不同类型的空心微珠开发了一种新型多功能超轻质高延性水泥基材料(Ultra-lightweight high ductility cement composite: ULHDCC)。采用空心微珠作为填料使混凝土密度降低,基于强度和能量准则,采用聚乙烯纤维(PE)改性增强了ULHDCC的延性。通过实验研究了其基本力学性能如抗压强度、直接拉伸强度、导热性能和微观结构等性能。实验结果显示开发的ULHDCC的表观密度为850~920kg/m³,但抗压强度高达20~33MPa,1%体积掺量PE纤维下其直接拉伸应变能力仍可达8%。导热系数低至0.152 W/m.K。ULHDCC材料可应用于浮体结构、轻型楼板、装配式建筑内外墙板、屋面和加固修复结构及功能材料。
Abstract:
This paper developed a new type of multi-functional ultra-lightweight high ductility cement composites(ULHDCC)incorporating three types of glass microspheres which led to reduce the composite density. Based on the strength and energy principals, this paper utilized the polyethylene fibers (PE) to improve the ductility of cement composites. The mechanical properties such as compressive strength, direct tensile strength, thermal properties and microstructures has been explored through experimental tests. The results showed that the dry density of ULHDCC was 850-920 kg/m?while the �compressive strength was up to 20-33MPa.The tensile strain in direct tensile test achieved to 8% even with low fiber content of 1% PE fibers by volume. The thermal conductivity of ULHDCC is only 0.152W/m.K. Such ULHDCC could be potentially applied to the lightweight floors, prefabricated external and internal walls of the constructions and repairing structures

参考文献/References:

参考文献 References [1] Guide for Structural Lightweight Aggregate Concrete : ASTM 213R. [S].USA:ACI Committee,2014.[2] LIU X, CHIA K S, ZHANG M H. Development of lightweight concrete with high resistance to water and chlorideion penetration[J]. Cement & Concrete Composites, 2010, 32(10):757-766.[3] OTHUMAN MA, WANG YC. Elevated temperature thermal properties of lightweight foamed concrete[J]. Construction &Building Materials, 2011, 25(2):705-716.[4] HUANG Z, LIEW JYR, LI W. Evaluation of compressive behavior of ultralightweight cement composite after elevated temperature exposure[J]. Construction & Building Materials, 2017, 148:579-589.[5] HUANG Z, WANG J, LIEW JYR, et al. Lightweight steel-concrete-steel sandwich shell subject to punching shear. Ocean Engineering 2015; 102: 146-161.[6] LOTFY A, HOSSAIN KMA, LACHEMI M. Lightweight Selfconsolidating Concrete with Expanded Shale Aggregates: Modelling and Optimization[J]. International Journal of Concrete Structures & Materials, 2015, 9(2):185-206.[7] LONG W, TAN X, XIAO B, et al. Effective use of ground waste expanded perlite as green supplementary cementitious materials in eco-friendly alkali activated slag composites[J]. Journal of Cleaner Production, 2018, 213:406-414.[8] BABU DS, BABU KG, WEE TH. Properties of lightweight expanded polystyrene aggregate concretes containing fly ash[J]. Cement & Concrete Research, 2005, 35(6):1218-1223.[9] BROOKS AL, ZHOU H, HANNA D. Comprative study of the mechanical and thermal properties of lihtweight cementitious composites[J]. Construction & Buildng Materials, 2018, 159:316-328.[10] HANIF A, PARTHASARATHY P, LU Z, et al. Fiber - Reinforced Cementitious Composites Incorporating. Glass Cenospheres Mechanical Properties and Microstructure[J]. Construction& Building Materials, 2017, 154:529-538.[11] CHEN Z, LI J, YANG E. High strength lightweight strain-hardening cementitious composite incorporating cenosphere[C]//9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. USA: Berkeley, 2016.[12] SOE KT, ZHANG YX, ZHANG LC. Material properties of a new hybrid fibre-reinforced engineered cementitious comosite[J].Construction& Building Materials, 2013, 43(3):399-407.[13] YU K, WANG Y, YU J, et al. A straing hardening cementitious composites with the tensile capacity up to 8%[J]. Construction & Building Materials, 2017, 137:410-419.[14] Huang Z, Wang F, Zhou Y, et al. A Novel, Multifunctional, Floatable, Lightweight Cement Composite: Development and Properties. Materials, 2018, 11: 2043.[15] 中国建筑科学研究院.普通混凝土力学性能试验方法标准:GB-T50081-2002 [S].北京:中国建筑工业出版社, 2003:10-11.China Academy of Architectural Sciences.Standard for test method of mechanicalproperties on ordinary concrete: GB-T50081-2002 [S].Beijing: China Architecture and Building Press, 2003:10-11.[16] ASTM C109&C109M. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars [S]. USA:ACI Committee,2002.[17] JSCE, Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks[C]. Tokyo, Japan Society of Civil Engineers, 2008:1–16.[18] ASTM C518. Standard Test Method for Steady State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus[S].USA,ACI Committee, 2004.[19] 梁兴文, 史庆轩. 混凝土结构设计原理[M].第2版北京;科学中国建筑工业出版社, 2011:14-23.LIANG Xingwen, SHI Qingxuan. Design Theory for Concrete Structure[M].2nd ed.Beijing;China Architecture and Building Press,2011:14-23.[20] LI V C. Engineered Cementitious Composites (ECC) –Material, Structural, and Durability Performance[M]. Book Chapter in Concrete Construction Engineering Handbook, 8th ed. Nawy, CRC Press, 2007. [21] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5):632-642.CAO M, XU L, ZHANG C. Review on micromechanical design, performance and development tendancy of engineered cementitious composite.[J]. Journal of the Chinese Ceramic Society, 2015, 43(5):632-642.[22] XU S, REINHARDT HW. Determination of double-Determination of double-K criterion for crack propagation in quasi-brittle fracture Part I: experimental investigation of crack propagation[J]. International Journal of Fracture, 1999, 98(2):111-149.[23] HUANG X, RANADE R, ZHANG Q, et al. Mechanical and thermal propertiesof green lightweight engineered cementitious composites. Constr Build Mater2013;48:954–60.[24] KANDA T, LI VC. Practical Design Criteria for Saturated Pseudo Strain Hardening Behavior in ECC[J]. ACT, 2006, 4(1):59-72.[25] WU Y, WANG JY, MONTEIRO PJM, et al. Development of ultralightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings[J]. Construction & Building Materials, 2015, 87:100-112.[26] HANIF A, DIAO S, LU Z, et al. Green lightweight cementitious composite incurporating aerogels and fly ash cenospheres – Mechanical and thermal insulating properties[J]. Construction & Building Materials, 2016, 116:422-430.[27] BLANCO F, GARCA P, MATEOS P, et al. Characteristics and properties of lightweight concrete manufactured with cenospheres [J]. Cement & Concrete Research, 2000, 30(11):1715-1722.[28] ORESHKIN D, SEMENOV V, ROZOVSKAYA T. Properties of Light-weight Extruded Concrete with Hollow Glass Microspheres[J]. Procedia Engineering, 2016, 153:638-643.

备注/Memo

备注/Memo:
收稿日期:2018-10-01 修改稿日期:2019-03-18基金项目:国家基金青年项目(51708360, 51778371);深圳市科技计划项目(JCYJ20180305124106675);广东省普通高校特色创新项目(2017KTSCX164).第一作者:黄振宇(1984-),博士,男,副研究员,从事轻型钢-混凝土-钢夹芯组合结构,超轻质高强混凝土,海洋工程纤维增强复合结构等研究。E-mail:huangzhenyu@szu.edu.cn
更新日期/Last Update: 2019-05-23