[1]李安桂,成劲光,高然.基于超细水雾作用下的地铁站台空间火灾烟气温度特性[J].西安建筑科技大学学报(自然科学版),2019,51(03):426-431.[doi:10.15986/j.1006-7930.2019.03.018]
 LI Angui,CHENG Jinguang,GAO Ran.The temperature characteristics of fire smoke in subway platform spacebased on ultrafine-water mist[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(03):426-431.[doi:10.15986/j.1006-7930.2019.03.018]
点击复制

基于超细水雾作用下的地铁站台空间火灾烟气温度特性()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年03期
页码:
426-431
栏目:
出版日期:
2019-06-30

文章信息/Info

Title:
The temperature characteristics of fire smoke in subway platform spacebased on ultrafine-water mist
文章编号:
1006-7930(2019)03-0426-06
作者:
李安桂成劲光高然
(西安建筑科技大学 环境与市政工程学院,陕西 西安 710055)
Author(s):
LI Angui CHENG Jinguang GAO Ran
(School of Environment and Municipal Engineering,Xi′an Univ. of Arch. & Tech., Xi′an 710055, China)
关键词:
超细水雾模型试验温度衰减烟气层高度降温效率
Keywords:
ultrafine-water mist model test temperature decaysmoke layer height cooling efficiency
分类号:
U231.96
DOI:
10.15986/j.1006-7930.2019.03.018
文献标志码:
A
摘要:
通过搭建超细水雾发生装置及地铁站台模型,进行了超细水雾作用下的烟气温度特性试验研究.结果表明:施加超细水雾后,烟气温度纵向分布在靠近火源的区域迅速衰减,之后温度基本不再变化,且对烟气层高度几乎无影响.另外,超细水雾可以迅速降低烟气温度,降温效果与雾化量、驱动气流速度、施加超细水雾时间等因素有关,雾化量、驱动气流速度增大温度降低,燃烧初期施加超细水雾的效果较好.随火源与超细水雾入口之间的距离增加,温度衰减趋势越迅速,且超细水雾入口位置对阻隔烟气扩散有一定作用.
Abstract:
Through the establishment of ultra-fine water mist generation system and subway platform model to carried out studies of smoke temperature under the effect of ultra-fine water mist. The results show that, the temperature of smoke is rapidly decay in the area near the fire source and then the temperature does not change obviously after applying the ultra-fine water mist and there is almost no effect on the height of the smoke layer. In addition, the ultra-fine water mist can rapidly reduce the temperature of the smoke, the cooling effect related to the atomization amount, the driving speed of the air flow, and the time applying ultra-fine water mist. The smoke temperature will decrease as the amount of atomization or the speed of the driving air flow increases and applying ultra-fine water mist in the combustion early stage shows the more effective cooling effect. The temperature decay more quickly with the increase of the distance between the fire source and the ultra-fine water mist inlet. Also, the ultra-fine water mist inlet position has a role in blocking the spread of smoke.

参考文献/References:

[1]ZHAO D, JIANG J, ZHOU R, et al. Numerical study on the optimisation of smoke ventilation mode for interchange subway ttation fire[J]. International Journal of Ventilation, 2016, 15(1):79-93.

[2]MENG N, WANG Q, LIU Z, et al. Smoke flow temperature beneath tunnel ceiling for train fire at subway station: reduced-scale experiments and correlations[J]. Applied Thermal Engineering, 2017, 115:995-1003.
[3]TSUKAHARA M, KOSHIBA Y, OHTANI H. Effectiveness of downward evacuation in a large-scale subway fire using fire dynamics simulator[J]. Tunnelling & Underground Space Technology, 2011, 26(4):573-581.
[4]ZHONG W, TU R, YANG J P, et al. A study of the fire smoke propagation in subway station under the effect of piston wind[J]. Statyba, 2015, 21(4):514-523.
[5]WU F, JIANG J, ZHOU R, et al. A new natural ventilation method for fire-induced smoke control in a common subway station[J]. International Journal of Ventilation, 2017:1-18.
[6]LUO N, LI A, GAO R, et al. Smoke confinement utilizing the usme ventilation mode for subway station fire[J]. Safety Science, 2014, 70:202-210.
[7]杨林. 浅析地铁火灾安全疏散[J]. 消防科学与技术, 2013(10):1115-1118.
YANG Lin. Analysis on the safe evacuation of subway fires[J]. Fire Science and Technology, 2013(10): 1115- 1118.
[8]丁杰. 地铁火灾特点及预防措施探讨[J]. 科技信息, 2011(1):35-36.
DING Jie. Discussion on the characteristics and preventive measures of subway fire[J]. Scientific Information, 2011(1):35-36.
[9]RIE D H, HWANG M W, KIM S J, et al. A study of optimal vent mode for the smoke control of subway station fire[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2006, 21(3):300-301.
[10]GAO R, LI A, HAO X, et al. Fire-induced smoke control via hybrid ventilation in a huge transit terminal subway station[J]. Energy & Buildings, 2012, 45(2):280-289.
[11]GAO R, LI A, HAO X, et al. Prediction of the spread of smoke in a huge transit terminal subway station under six different fire scenarios[J].Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2012, 31(5):128-138.
[12]LUO N, LI A, GAO R, et al. An experiment and simulation of smoke confinement utilizing an air curtain[J]. Safety Science, 2013, 59:10-18.
[13]MENG N, HU L, WU L, et al. Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train fire at subway station[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2014, 40(1):151-159.
[14]WOOD R W, LOOMIS A L . The physical and biological effects of high-frequency sound-waves of great intensity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1927, 4(22):417-436.
[15]ADIGA K C, HATCHER R F. Ultra fine water mist application in aircraft hidden fires[C]// 14th Annual Int Halon Options Technical Working Conf(HOTWC). Albuquerque,New Mexico:BFRL Pub.,2004:125-137.
[16]NDUBIZU CC, ANANTH R, ROUSON D, et al. Mechanism of suppression and extinguishment of communication cable fire by ultra fine water mist in cross-flow[R]. Naval Research Lab Washington DC:Chemistry Div, 2006.
[17]ADIGA K C, Jr R F H, SHEINSON R S, et al. A Computational and experimental study of ultra fine water mist as a total flooding agent[J]. Fire Safety Journal, 2007, 42(2):150-160.
[18]CHEN L Y, ZONG R W, SONG-YANG L I, et al.Experimental study on restraining flashover by ultra-fine water mist in confined space[J]. Journal of University of Science & Technology of China, 2009,39 (7) :777 - 782.
[19]LIANG T S, YU JJ, LU G P, et al. A Numerical Study of the fire-extinguishing performance of ultrafine water mist in small scale tunnel space[J]. Applied Mechanics & Materials, 2014, 444-445:1555-1558.
[20]ZHU D M, LIU J Y, YU Y, et al. Experimental study on total flooding extinguishing test by new ultra-fine water mist fire extinguisher extinguishing combustion of paper[C]//2014 7th International Conference on Intelligent Computation Technology and Automation. Changsha,China:IEEE, 2014: 252-255.

相似文献/References:

[1]赵 康,石 亮,罗嗣海.一种便捷强夯模型试验装置的设计及应用[J].西安建筑科技大学学报(自然科学版),2012,44(02):224.[doi:10.15986/j.1006-7930.2012.02.013]
 ZHAO Kang,SHI Liang,LUO Si-hai.The design of a convenient device for dynamic compaction model test and its application[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(03):224.[doi:10.15986/j.1006-7930.2012.02.013]
[2]冀 伟,刘世忠,蔺鹏臻.等截面波形钢腹板连续箱梁竖向基频的参数研究[J].西安建筑科技大学学报(自然科学版),2012,44(04):468.[doi:10.15986/j.1006-7930.2012.04.003]
 JI Wei,LIU Shi-zhong,LIN Peng-zhen.Study on dynamic characteristics parameters of equal section composite box girder with corrugated steel webs[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(03):468.[doi:10.15986/j.1006-7930.2012.04.003]
[3]邓军涛,王娟娟,门玉明.锚杆格构梁模型试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(04):542.[doi:10.15986/j.1006-7930.2014.04.015]
 Deng Juntao,WANG Juanjuan,et al.Study on the model test of lattice beam anchor[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(03):542.[doi:10.15986/j.1006-7930.2014.04.015]
[4]王江丽,闫增峰,王旭东,等.敦煌莫高窟洞窟自然通风实验研究[J].西安建筑科技大学学报(自然科学版),2015,47(05):712.[doi:DOI:10.15986/j.1006-7930.2015.05.018]
 WANG Jiangli,YAN Zengfeng,WANG Xudong,et al.Experimental research on natural ventilation of the Mogao Grottoesin Dunhuang[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(03):712.[doi:DOI:10.15986/j.1006-7930.2015.05.018]
[5]邹金杰,赵宇,李姣阳,等.黏土浅埋隧道开挖面稳定性模型试验研究[J].西安建筑科技大学学报(自然科学版),2017,49(04):478.[doi:10.15986/j.1006-7930.2017.04.003]
 ZOU Jinjie,ZHAO Yu,LI Jiaoyang,et al.Model test study of the face stability of the shallow tunnel in the clay[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(03):478.[doi:10.15986/j.1006-7930.2017.04.003]
[6]段旭,董琪,门玉明,等.黄土挖填方场地中桩筏基础受力变形状态研究[J].西安建筑科技大学学报(自然科学版),2018,50(03):373.[doi:10.15986/j.1006-7930.2018.03.010]
 DUAN Xu,DONG Qi,MEN Yuming,et al.Study on mechanism of deformation and destruction for piled raft foundation in loess areas with excavatedfilled[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(03):373.[doi:10.15986/j.1006-7930.2018.03.010]
[7]李安桂,黎宇伟,张 莹,等.基于鲁地拉水电站主变室的SF6泄漏特性研究[J].西安建筑科技大学学报(自然科学版),2019,51(02):268.[doi:10.15986/j.1006-7930.2019.02.017]
 LI Angui,LI Yuwei,ZHANG Ying,et al.Study on the leakage characteristics of SF6 based on main transformer room of Ludila Hydropower station[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(03):268.[doi:10.15986/j.1006-7930.2019.02.017]

备注/Memo

备注/Memo:
收稿日期:2018-03-27修改稿日期:2019-04-25
基金项目:陕西省科技创新重点项目(13115);中国工程院咨询研究项目(2017-XZ-15-4)
第一作者:李安桂(1963-),男,教授,博士生导师,主要从事建筑通风空调及建筑节能研究.E-mail:liag@xauat.edu.cn
更新日期/Last Update: 2019-07-22