[1]冯峥,李传习,邓帅,等.钢UHPC组合梁桥面板静承载能力比较分析[J].西安建筑科技大学学报(自然科学版),2019,51(04):551-558.[doi:10.15986/j.1006-7930.2019.04.013]
 FENG Zheng,LI Chuanxi,DENG Shuai,et al.Comparative analysis of static bearing capacity on bridge deck in Steel-UHPC composite beams[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):551-558.[doi:10.15986/j.1006-7930.2019.04.013]
点击复制

钢UHPC组合梁桥面板静承载能力比较分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
51
期数:
2019年04期
页码:
551-558
栏目:
出版日期:
2019-08-30

文章信息/Info

Title:
Comparative analysis of static bearing capacity on bridge deck in Steel-UHPC composite beams
文章编号:
1006-7930(2019)04-0551-08
作者:
冯峥李传习邓帅吴善友雷智杰
(长沙理工大学 桥梁工程安全控制教育部重点实验室,湖南 长沙 410004)
Author(s):
FENG Zheng LI Chuanxi DENG Shuai WU Shanyou LEI Zhijie
(Key Laboratory of Safety Control for Bridge Engineering of the Ministry of Education, Changsha University of Science & Technology, Changsha 410004, China)
关键词:
桥梁工程带肋桥面板静力性能静承载能力分析钢UHPC组合梁桥
Keywords:
bridge engineering ribbed bridge panel static performance analysis of static bearing capacity steel-UHPC composite beam bridge
分类号:
U443.32
DOI:
10.15986/j.1006-7930.2019.04.013
文献标志码:
A
摘要:
为解决传统钢混组合梁由于混凝土板本身缺陷所引起的桥面板开裂问题,提出一种性价较优的钢UHPC组合梁桥面板截面形式,以某桥为工程背景设计了4种桥面板方案,即矮胖型带肋板方案、瘦高型带肋板方案、矩形平板方案、华夫板方案,利用ABAQUS进行了桥面板影响线及静承载能力分析,得到了以下结论:(1)桥面板轮载应力影响范围是局部的,纵桥向作用于两相邻横隔板之外的荷载对该两横隔板间跨中桥面板各点的应力几乎无贡献,横桥向作用于距某板肋超过横隔板间距的荷载对该板肋及其附近面板的应力几乎无贡献,而纵隔板上部的板肋荷载横向影响范围较广,约为2倍横隔板间距;(2)各方案桥面板主拉应力值较大区域集中在跨中肋(面)板下底缘以及与纵隔板相接处的面板顶缘;(3)桥面板截面型式对自身的抗弯承载能力影响较大,瘦高型带肋板方案具有较优的综合性能
Abstract:
In order to solve the problem with the bridge deck cracking caused by the concrete plate defects itself in the traditional steel-concrete composite beam and to find a cost-effective steel-UHPC composite beam bridge deck section, four kinds of bridge deck scheme were designed with a bridge as the engineering background, namely pyknic-type rib scheme, lanky-type rib scheme, rectangular plate scheme and waffle slab scheme, respectively. The influence line and static bearing capacity of bridge deck was analysed by ABAQUS, and the conclusions are as follows: (1) The stress influence range in bridge deck under the action of vehicles is local. In the longitudinal direction, the load away from two adjacent diaphragms makes almost no contribution to the bridge deck stress in the middle of the two diaphragms. In the transverse direction, the load away from the diaphragm spacing makes almost no contribution to the rib and its adjacent panel normal stress, but the transverse load influence range of the panel there is onto longitudinal clapboard is wide, about twice the spacing of diaphragm. (2) The large tensile stress area in projects is concentrated upon the bottom of the rib (panel) plate and the upper plate onto the longitudinal clapboard. (3)The bridge deck cross-section has a great influence on its flexural capacity, and the lanky-type rib scheme has a better comprehensive performance.

参考文献/References:

[1]聂建国, 陶慕轩, 吴丽丽, 等. 钢混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110-112.

NIE Jianguo, TAO Muxuan, WU Lili, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-112.

[2]单宏伟. 结合梁斜拉桥桥面板抗裂对策研究[D]. 上海:同济大学. 2007.

SHAN Hongwei. Study on crack resistance measures of bridge deck of compositebeam cable-stayed bridge [D]. Shanghai: Tongji University, 2007.

[3]SUNG W Y, JINKYO F. C. Evaluation of the flexural behavior of composite beam with inverted T steel girder and steel fiber reinforced ultra high performance concrete slab[J]. Engineering Structures, 2016, 118: 1-15.

[4]ZHOU M, LU W, SONG J W. Application of ultra-high performance concrete in bridge engineering[J]. Construction and Building Materials, 2018, 186: 1257-1266.

[5]陈宝春, 季韬. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 33(3): 1-23.

CHEN Baochun, JI Tao. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 33(3): 1-23.

[6]郑文忠, 李莉. 活性粉末混凝土配置及其配合比计算方法[J]. 湖南大学学报(自然科学版)2009, 36(2): 13-17.

ZHEN Wenzhong, LI Li. Preparation and mix proportion calculation of reactive powder concrete[J]. Journal of Hunan University (Natural Sciences Edition), 2009, 36(2): 13-17.

[7]吴炎海,何雁斌. 活性粉末混凝土(RPC200)的配置试验研究[J]. 中国公路学报, 2003, 16(4): 44-49.

WU Yanhai, HE Yanbin. Experimental research on proportion of reactive powder concrete[J]. China Journal of Highway and Transport, 2003, 16(4): 44-49.

[8]邵旭东,胡建华.钢—超高性能混凝土轻型组合桥梁结构[M].北京: 人民交通出版社, 2015.

SHAO Xudong, HU jianhua. The steel-UHPC lightweight composite bridge structures[M]. Beijing: China Communications Press, 2015.

[9]RUSSEL H G, GRAYBEAL B A. Ultra-high performance concrete: A state of the art report for the Bridge community, FHWA-HIF-13-060[R]. McLean, D.C.: Federal Highway Administration, 2013.

[10]AFGC. Ultra high performance fibre-reinforced concretes[S]. Paris: AFGC and SETRA Working Group, 2013.

[11]中华人民共和国国家质量监督检验检疫总局.活性粉末混凝土: GB/T 31387-2015. [S]. 北京: 中国标准出版社, 2015-11-01.

General Administration of Quality Supervision, mspection and Quarantine of P. R. China.Rective power concrete: GB/T 31387-2015. [S]. Beijing: Standards Press of China, 2015-11-01.

[12]AALETI S, PETERSEN B, SRITHARAN S. Design guide for precast UHPC waffle deck panel system, including connections[R]. Washington, D.C.: Federal Highway Administration, 2013.

[13]邵旭东, 吴佳佳, 刘榕, 等. 钢UHPC轻型组合桥梁结构华夫桥面板的基本性能[J]. 中国公路学报, 2017, 30(3): 218-225,245.

SHAO Xudong, WU Jiajia, LIU Rong, et al. Basic performance of waffle deck panel of lightweight steel-UHPC composite bridge[J]. China Journal of Highway and Transport, 2017, 30(3): 218-225 ,245.

[14]孔令方, 邵旭东. 钢UHPC轻型组合梁桥面板受弯性能有限元分析[J].公路交通科技, 2016, 33(10): 88-95.

KONG Lingfang, SHAO Xudong. Finite element analysis of flexural performance of steel-UHPC lightweight composite girder deck[J]. Journal of highway and transportation Research and Development, 2016, 33(10): 88-95.

[15]吴佳佳, 邵旭东, 刘榕. 钢UHPC轻型组合梁桥面板结构形式研究[J]. 公路工程, 2017, 42(4): 77-81.

WU Jiajia, SHAO Xudong, LIU Rong. Structural featureresearch on UHPC deck of steel UHPC lightweight composite bridge [J]. Highway Engineering, 2017, 42(4): 77-81.

[16]丘明红, 邵旭东, 甘屹东, 等. 单向预应力UHPC连续箱梁桥面体系优化设计研究[J]. 土木工程学报, 2017, 50(11): 87-97.

相似文献/References:

[1]党 栋,贺拴海,高小妮.基于不同结构形式的钢箱梁锚固区力学行为研究[J].西安建筑科技大学学报(自然科学版),2012,44(06):818.[doi:10.15986/j.1006-7930.2012.06.010]
 DANG Dong,HE Shuan-hai,GAO Xiao-ni.Mechanical behavior analysis on different structural forms of steel box girder anchorage zone[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(04):818.[doi:10.15986/j.1006-7930.2012.06.010]
[2]郭 琦,叶全斌,尹海军,等.预应力钢绞线网加固混凝土桥梁的索力分布试验研究[J].西安建筑科技大学学报(自然科学版),2014,46(01):44.[doi:10.15986/j.1006-7930.2014.01.009]
 GUO QiYE QuanbinYIN HaijunYAN Wen.Experimental study of distribution on prestressed strand mesh in strengthening concrete bridges[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):44.[doi:10.15986/j.1006-7930.2014.01.009]
[3]任 伟,盖轶婷,黄亚男.软场地土拓宽桥梁地震响应分析[J].西安建筑科技大学学报(自然科学版),2014,46(04):502.[doi:10.15986/j.1006-7930.2014.04.008]
 REN Wei,GAI YiTing,HUANG Yanan.Seismic response analysis of widening bridges in soft site[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(04):502.[doi:10.15986/j.1006-7930.2014.04.008]
[4]郭 琦,尹海军,贺拴海.混凝土梁桥钢筋工作应力释放法试验研究[J].西安建筑科技大学学报(自然科学版),2015,47(04):517.[doi:10.15986/j.1006-7930.2015.04.010]
 GUO Qi,YIN Haijun,HE Shuanhai.Study on stress release method of reinforced for concrete girder bridge[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(04):517.[doi:10.15986/j.1006-7930.2015.04.010]
[5]景天虎1,2,李 桅1,等.悬索桥主缆线形确定的常用精确解析算法比较及电算高效实现方法研究[J].西安建筑科技大学学报(自然科学版),2011,43(06):821.[doi:DOI:10.15986/j.1006-7930.2011.06.010]
 ,,et al.Comparison on common precise numerical analytical algorithmsto determine main cables’curve shape in suspension bridges andstudy on highly effective methods of computati[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2011,43(04):821.[doi:DOI:10.15986/j.1006-7930.2011.06.010]
[6]周勇军,韩智强,赵 煜,等.高墩大跨弯连续刚构桥冲击系数计算公式[J].西安建筑科技大学学报(自然科学版),2016,48(02):207.[doi:10.15986/j.1006-7930.2016.02.010]
 ZHOU Yongjun,HAN Zhiqiang,ZHAO Yu,et al.Dynamic load allowance formula of long-span continuous curved rigid frame bridge with high piers[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(04):207.[doi:10.15986/j.1006-7930.2016.02.010]
[7]邵旭东,邱明红,晏班夫,等.基于UHPC材料的高性能装配式桥梁结构研发[J].西安建筑科技大学学报(自然科学版),2019,51(02):160.[doi:10.15986/j.1006-7930.2019.02.002]
 SHAO Xudong,QIU Minghong,YAN Banfu,et al.Research of high performance fabricated bridge structures based on UHPC[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(04):160.[doi:10.15986/j.1006-7930.2019.02.002]
[8]郭风俊.基于ANSYS的不平衡日照混凝土箱梁温度场分布研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):207.[doi:10.15986/j.1006-7930.2020.02.008]
 GUO Fengjun.Research on temperature field distribution of unbalanced sunshine concrete box girder based on ANSYS[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(04):207.[doi:10.15986/j.1006-7930.2020.02.008]
[9]辛公锋,龙关旭,袁阳光,等.高强钢丝两种镀层耐蚀性及点蚀概率模型[J].西安建筑科技大学学报(自然科学版),2023,55(04):616.[doi:10.15986/j.1006-7930.2023.04.018 ]
 XIN Gongfeng,LONG Guanxu,YUAN Yangguang,et al.Corrosion resistance and pitting probability models of two kinds of coatings on high strength steel wires[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(04):616.[doi:10.15986/j.1006-7930.2023.04.018 ]
[10]刘继,李珍,药天运.熔丝制造3D打印CFRP层内损伤破坏机理与模型研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):74.[doi:10.15986/j.1006-7930.2024.01.010]
 LIU Ji,LI Zhen,YAO Tianyun.Research on damage and failure mechanism and model of 3D printed cfrp layer by fused filament fabrication[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(04):74.[doi:10.15986/j.1006-7930.2024.01.010]

备注/Memo

备注/Memo:
收稿日期:2018-07-28
修改稿日期:2019-06-08
基金项目:国家自然科学基金(51778069);桥梁工程领域省部级重点实验室开放基金 (18KE04); 湖南省研究生科研创新项目 (CX2018B522)?
第一作者:冯峥(1992-),男,博士生,主要从事UHPC桥梁结构研究. E-mail:fzllufr@163.com
更新日期/Last Update: 2019-09-17