[1]高 智,魏玉峰,金磊磊.基于M-C方法的粗粒土剪切排列分布演化机理研究[J].西安建筑科技大学学报(自然科学版),2020,52(06):873-880.[doi:10.15986/j.1006-7930.2020.06.014 ]
 GAO Zhi,WEI Yufeng,JIN Leilei.Research on the evolution of coarse-grained soil on permutation distribution based on M-C model[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):873-880.[doi:10.15986/j.1006-7930.2020.06.014 ]
点击复制

基于M-C方法的粗粒土剪切排列分布演化机理研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年06期
页码:
873-880
栏目:
出版日期:
2020-12-20

文章信息/Info

Title:
Research on the evolution of coarse-grained soil on permutation distribution based on M-C model
文章编号:
1006-7930(2020)06-0873-08
作者:
高 智魏玉峰金磊磊
(地质灾害防治与地质环境保护国家重点实验室 成都理工大学,四川 成都 610059)
Author(s):
GAO Zhi WEI Yufeng JIN Leilei
(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology, Chengdu 610059, China)
关键词:
粗粒土 排列熵 M-C方法 剪切试验 排列分布
Keywords:
coarse grained soil permutation entropy M-C model shearing test permutation distribution
分类号:
TU411
DOI:
10.15986/j.1006-7930.2020.06.014
文献标志码:
A
摘要:
考虑颗粒分布的不确定性,在排列熵计算过程中引入蒙特卡罗(Monte-Carlo, 简称M-C)方法,用以表征排列混乱程度.为探究粗粒土剪切过程中排列熵的演化规律,以粗颗粒含量P5为指标,设立4种不同类型的粗粒土结构为研究对象,结合常法向应力下的剪切试验(CNL)试验结果,运用Image Pro Plus等图像处理软件,同时通过室内剪切试验和数值模拟双向验证所揭示规律的可靠性.在206 kPa的法向应力下对4种结构的粗粒土进行剪切试验,以一组骨架密实结构数据为算例,利用多项式拟合试验结果,对比分析数值模拟和室内剪切试验排列熵变化结果.研究结果表明:剪切初期,粗粒土的排列熵随剪应力的增加呈先增大后减小的趋势,在达到峰值后随着剪应力的缓慢减小表现为先增大后减小的趋势.随着粗颗粒含量的升高,粗粒土结构发生变化,排列熵值增大,同时其排列分布的有序性受剪切作用的影响越大.
Abstract:
Considering the uncertainty of particle distribution, M-C method is introduced in the calculation of permutation entropy to characterize the degree of permutation chaos. To explore the coarse grained soil shear permutation entropy evolution rule, in the process of P5 coarse particle content as indexes, four different types of coarse grained soil structure were set up as the research object, in combination with shear test under normal stress(CNL)test results, using the image processing software, such as the Image Pro Plus through indoor shear test and numerical simulation of two-way authentication at the same time reveals the reliability of the law. Under the normal stress of 206 kPa, shear tests were carried out on coarse grained soil with four kinds of structures. A set of dense skeleton structure data is taken as an example, and polynomial fitting test results are used to compare and analyze the results of permutation entropy change in numerical simulation and laboratory shear test. Results show that the permutation entropy of coarse-grained soil increases first and then decreases with the increase of shear stress at the initial stage of shear stress, and increases first and then decreases with the slow decrease of shear stress after reaching the peak. With the increase of coarse grain content, the structure of coarse grain soil changs, the permutation entropy increases. Meanwhile the ordering of its permutation distribution is greatly affected by shear.

参考文献/References:

[1] 太沙基 K. 理论土力学[M].徐志英,译,北京:地质出版社,1960.
TERZAGHI K. Theoretical soil mechanics[M].XU Zhiying,Translated.Beijing: Geological Publishing House, 1960.
[2]郑星,敖大华,李裕忠,等. 砂卵石粗粒土颗粒外形特征测量与评定初探[J].岩土力学,2018,39(5): 1805-1810.
ZHENG Xing,AO Dahua, LI Yuzhong, et al. A preliminary study of measurement and evaluation of geometry characteristics of coarse gravel[J]. Rock and Soil Mechanics, 2018, 39(5): 1805-1810.
[3]程展林,左永振,丁红顺.CT技术在岩土试验中的应用研究[J].长江科学院院报,2011,28(3): 33-38.
CHENG Zhanli, ZUO Yongzhen, DING Hongshun. Application of CT technology in geotechnical mechanics[J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(3): 33-38.
[4]王东伟,陆武萍,唐朝生,等. 砂土微观结构样品制备技术及量化方法研究[J]. 岩土力学,2019,40(12): 4783-4792.
WANG Dongwei, LU Wuping, TANG Chaosheng, et al. Sample preparation technique and microstructure quantification method for sandy soil [J]. Rock and Soil Mechanics, 2019, 40(12): 4783-4792.
[5]赵鲁庆,杨更社,吴迪,等. 冻融黄土微观结构变化规律及分形特性研究[J]. 地下空间与工程学报,2019,15(6): 1680-1690.
ZHAO Luqing, YANG Gengshe, WU Di, et al. Micro structure and fractal characteristics loess under freeze-thaw cycles[J].Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1680-1690.
[6]聂志红,袁梦,王翔. 粗粒土的粒间孔隙特征与其影响因素的相关性研究[J]. 铁道科学与工程学报,2018,15(7): 1700-1707.
NIE Zhihong, YUAN Meng, WANG Xiang. Study on the correlation between intergranular pore characteristics and influencing factors of coarse grained soil[J]. Journal of Railway Science and Engineering, 2018, 15(7): 1700-1707.
[7]李学丰,王奇,刘金峰,等. 考虑砂土颗粒形状的细观组构定量描述[J].中国公路学报,2016,29(10): 29-36,53.
LI Xuefeng, WANG Qi, LIU Jinfeng, et al. Quantitative description of microscopic fabric based on sand particle shapes[J].China Journal of Highway and Transport, 2016, 29(10): 29-36, 53.
[8]杨涵,徐文杰,张启斌. 散体颗粒介质变形局部化宏–细观机制研究[J].岩石力学与工程学报,2015,34(8): 1692-1701.
YANG Han, XU Wenjie, ZHANG Qibin, et al. Macroand meso-mechanism of strain localization in granular material[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1692-1701.
[9]蒋中明,袁涛,刘德谦,等. 粗粒土渗透变形特性的细观数值试验研究[J].岩土工程学报,2018,40(4): 752-758,706.
JIANG Zhongming, YUAN Tao, LIU Dengqian, et al. Mesoscopic numerical tests on seepage failure characteristics of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 752-758,706.
[10]胡敏云,肖斌,张旭俊,等.粗粒土细观组构分析的影响因素研究[J].浙江工业大学学报,2018,46(3):342-349.
HU Minyun, XIAO Bin, ZHANG Xujun, et al. Study on influential factors of micro-fabric analysis of granular sand[J]. Journal of Zhejiang University of Technology, 2018, 46(3): 342-349.
[11]SHANNON C E, WEAVER W. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27:379-423,623-656.
[12]施斌. 粘性土击实过程中微观结构的定量评价[J]. 岩土工程学报,1996,18(4): 57-62.
SHI Bin. Quantitative assessment of changes of microstructure for clayey soil in the process of compaction[J].Chinese Journal of Geotechnical Engineering, 1996, 18(4): 57-62.
[13]曾志雄,孔令伟,田海,等. 膨胀岩崩解特性的干湿循环效应与粒度熵表征[J].岩土力学,2017,38(7): 1983-1989.
ZENG Zhixiong, KONG Lingwei, TIAN Hai, et al. Effect of drying and wetting cycles on disintegration behavior of swelling mudstone and its grading entropy characterization[J]. Rock and Soil Mechanics, 2017, 38(7): 1983-1989.
[14]陈旺旺,李典庆,唐小松,等. 抗剪强度参数概率分布的最大熵估计及边坡可靠度分析[J]. 岩土力学,2018,39(4): 1469-1478.
CHEN Wangwang, LI Dianqing, TANG Xiaosong, et al. Probability distribution of shear strength parameters using maximum entropy principle for slope reliability analysis[J]. Rock and Soil Mechanics, 2018, 39(4): 1469-1478.
[15]张璐璐, 张吉, 徐耀, 等. 岩土工程可靠度理论[M]. 上海: 同济大学出版社, 2011: 89-104.
ZHANG Lulu, ZHANG Ji, XU Yao, et al. Reliability theory of geotechnical engineering[M].Shanghai: Tongji University Press, 2011: 89-104.
[16]WU L Z, LI S H, ZHANG M, et al. A new method for classifying rock mass quality based on MCS and TOPSIS[J]. Environmental Earth Sciences, 2019, 78: 199.
[17]李绍红,王少阳,吴礼舟. 基于MCS-TOPSIS耦合模型的岩体质量分类研究[J].岩石力学与工程学报,2017,36(5): 1053-1062.
LI Shaohong, WANG Shaoyang, WU Lizhou. Quality classification of rock mass based on MCS-TOPSIS coupling model[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1053-1062.
[18]吴为义. 颗粒材料组构的DEM模拟[C]//全国岩土力学数值分析与解析方法讨论会,珠海:1988.
WU Weiyi. DEM simulation of granular material fabric[C]//National Symposium on Numerical Analysis and Analytical Methods of Rock and Soil Mechanics,Zhuhai:1988.
[19]郭庆国. 关于粗粒土工程特性及其分类的探讨[J]. 水利水电技术,1979(6): 53-57.
GUO Qingguo. Discussions on characteristics and classification of coarse grained soil[J].Water Resources and Hydropower Engineering, 1979,(06): 53-57.
[20]陈坚,罗强,张良,等. 高速铁路基床表层级配碎石填料土体结构类型试验分析[J].铁道学报,2015,37(11):82-88.
CHEN Jian, LUO Qiang, ZHANG Liang, et al. Experimental analysis on soil structure type of graded gravelly soil filling surface layer of subgrade of high-speed railway[J]. Journal of the China Railway Society, 2015, 37(11): 82-88.

相似文献/References:

[1]刘容地,郑建国,李致远.砂砾石与混凝土接触面力学性能的试验研究[J].西安建筑科技大学学报(自然科学版),2013,45(06):834.[doi:10.15986/j.1006-7930.2013.06.014]
 LIU Rong-di,ZHENG Jian-guo,LI Zhi-yuan.Experimental research on mechanical properties of interface between concrete and gravel[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(06):834.[doi:10.15986/j.1006-7930.2013.06.014]
[2]刘凤云,邵珠山,张硕成,等.击实功对粗颗粒填料冻胀特性影响的试验研究[J].西安建筑科技大学学报(自然科学版),2018,50(06):834.[doi:10.15986/j.1006-7930.2018.06.011]
 LIU Fengyun,SHAO Zhushan,ZHANG Shuocheng,et al.Experiment study on compaction energy influence of frost heaving properties on coarse grained soil[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(06):834.[doi:10.15986/j.1006-7930.2018.06.011]
[3]陈鸽,朱俊高,袁荣宏,等.风干与饱和堆石料强度与变形特性试验研究[J].西安建筑科技大学学报(自然科学版),2019,51(06):853.[doi:10.15986/j.1006-7930.2019.06.012]
 CHEN Ge,ZHU Jungao,et al.Experimental study on strength and deformation characteristics of dry and saturated coarse-grained soils[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(06):853.[doi:10.15986/j.1006-7930.2019.06.012]

备注/Memo

备注/Memo:
收稿日期:2020-06-28 修改稿日期:2020-11-16
基金项目:国家重点研发计划基金资助项目(2017YFC1501000); 国家自然科学基金项目资助(42072303)
第一作者:高 智(1996-),男,硕士研究生,主要从事地质工程方向研究.E-mail:gaozhi96@163.com 通信作者:魏玉峰(1979-),男,博士后,副教授,主要从事地质工程、岩土工程的科研和教学工作.E-mail: weiyufeng@cdut.edu.cn

更新日期/Last Update: 2020-12-20