[1]王 帅,郅 彬,覃燕林,等.人工制备易破碎颗粒材料的力学特性[J].西安建筑科技大学学报(自然科学版),2020,52(06):881-888.[doi:10.15986/j.1006-7930.2020.06.015 ]
 WANG Shuai,ZHI Bin,QIN Yanlin,et al.Mechanical properties of artificially prepared crushing granular materials[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(06):881-888.[doi:10.15986/j.1006-7930.2020.06.015 ]
点击复制

人工制备易破碎颗粒材料的力学特性()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
52
期数:
2020年06期
页码:
881-888
栏目:
出版日期:
2020-12-20

文章信息/Info

Title:
Mechanical properties of artificially prepared crushing granular materials
文章编号:
1006-7930(2020)06-0881-08
作者:
王 帅1郅 彬1覃燕林2刘恩龙2
(1.西安科技大学 建筑与土木工程学院,陕西 西安 710054; 2.四川大学 水力学与山区河流开发保护国家重点实验室,水利水电学院,四川 成都 610065)
Author(s):
WANG Shuai1 ZHI Bin1 QIN Yanlin2 LIU Enlong2
(1.School of Architecture and Civil Engineering, Xi 'an University of Science and Technology, Xi'an 710054, China; 2.State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource &Hydropower, Sichuan University, Chengdu 610065, China)
关键词:
粒状材料 颗粒破碎 三轴试验 数值模拟
Keywords:
Granular materials particle crushing triaxial test numerical simulation
分类号:
TU411
DOI:
10.15986/j.1006-7930.2020.06.015
文献标志码:
A
摘要:
随着应力水平的提高,颗粒破碎现象越来越明显,为了研究颗粒破碎机理以及破碎对粒状材料力学特性的影响.采用人工制备的水泥土球形颗粒模拟易破碎材料,进行固结排水和固结不排水三轴剪切试验,探讨了不同围压作用下颗粒材料的力学特性.固结排水试验采用的围压分别为100 kPa、200 kPa、300 kPa和400 kPa,固结不排水试验采用的围压分别为100 kPa、200 kPa和300 kPa.并基于颗粒流数值模拟方法,对固结排水(CD)试验结果进行了数值模拟.研究结果表明:采用人工制备的水泥球颗粒集合体试样可以进行探讨颗粒材料的颗粒破碎过程及机理; 固结围压越大,试验结束时颗粒破碎越明显,且强度包线呈非线性; 颗粒流数值模拟方法可模拟人工制备易破碎粒状材料在固结排水(CD)试验时的应力-应变和体积变形特性.
Abstract:
With the increase of stress level, the phenomenon of particle crushing becomes more and more obvious, in order to study the mechanism of particle crushing and the impact of crushing on the mechanical properties of granular materials. The artificials cemented sphere particles were employed to simulate the crushing grains, on which CD and CU triaxial tests were conducted to explore the breakage properties of crushing materials. For the samples tested on consolidation drain conditions(CD), the confining pressures applied were 100 kPa, 200 kPa, 300 kPa and 400 kPa and, for the samples tested on consolidation undrain conditions(CU), the confining pressures applied were 100kPa, 200kPa and 300kPa. Furthermore, the tested results were simulated based on the discrete element method of particle flow method. Results demonstrate that the samples composed of the artificial cemented sphere particles could be used to investigate the crushing process and mechanisms of granular materials; with the increase of confining pressures, there are more breakage of particles at the end of test and the strength envelope is nonlinear; the particle flow method could be used to simulate the stress-strain and volumetric deformation properties of artificially prepared crushing materials tested under consolidation drain conditions.

参考文献/References:

[1] 沈珠江. 理论土力学[M].北京:中国水利水电出版社, 2000.
SHEN Zhujiang. Theoretical soil mechanics[M].Beijing: Waterpub Press, 2000.
[2]ODA J, Konishi S, NEMAT N. Experimental micromechanicalevaluation of strength of granular materials:effects of particle rolling [J]. Mechanics of Materials,1982,1:269-283.
[3]BESUELLE P,DESRUES J,RAYNAUD S. Experimental characterization of the localization phenomenon inside a vosges sandstone in a triaxial cell[J]. International Journal of Rock Mechanics and Mining Sciences,2000(37): 1223-1237.
[4]MARSAL R J. Mechanical properties of rockfill[A]//Embankment-dam engineering.New York: John Wiley&Sons,1973.
[5]刘汉龙,秦红玉,高玉峰,等. 堆石粗粒料颗粒破碎试验研究[J].岩土力学,2005,26(4):562-566.
LIU Hanlong, QIN Hongyu, GAO Yufeng, et al. Experimental study on particle breakage of rockfill and coarse aggregates [J].Rock and Soil Mechanics, 2005, 26(4): 562-566.
[6]NAKATA Y, HYDE A F L, HYODO M et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Geotechnique, 1999,49(5): 567-583
[7]COOP M R, SORENSEN K K, FREITAS T B et al. Particle breakage during shearing of a carbonate sand [J]. Geotechnique, 2004,54(3): 157-163
[8]刘恩龙, 覃燕林, 陈生水, 等. 堆石料的临界状态探讨[J]. 水利学报, 2012, 43(5): 505-511.
LIU Enlong, QIN Yanlin, CHEN Shengshui, et al. Investigation on critical state of rockfill materials[J]. 2012, 43(5): 505-511.
[9]LIU Enlong. Breakage and deformational mechanism of crushable granular materials[J].Computers and Geotechnics, 2010,37(5): 723-730.
[10]刘恩龙, 沈珠江, 陈铁林. 棒状结构体试件破损过程的实验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2003-2008.
LIU Enlong, SHEN Zhujiang, CHEN Tielin. Experimental study on breaking process of bar-like structural bodies[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 2003-2008.
[11]毕忠伟, 孙其诚, 刘建国, 等. 双轴压缩下颗粒物质剪切带的形成与发展[J].物理学报, 2011, 60(3): 376 -385.
BI Zhongwei, SUN Qicheng, LIU Jianguo, et al. Development of shear band in a granular material in biaxial tests[J]. Acta Physica Sinica, 2011, 63(3): 376-385.
[12]刘恩龙, 陈生水, 李国英, 等. 循环荷载作用下考虑颗粒破碎的堆石体本构模型[J].岩土力学,2012,33(7): 1972-1978.
LIU Enlong, CHEN Shengshui, LI Guoying, et al.Constitutive model of rockfill considering particle breakage under cyclic loading[J].Geotechnical mechanics. 2012, 33(7): 1972-1978
[13]EINAV I. Breakage mechanics-part I: theory[J].Journal of the Mechanics and Physics of Solids, 2007(55): 1274-1297.
[14]迟世春, 贾宇峰. 土颗粒破碎耗能对罗维剪胀模型的修正[J]. 岩土工程学报, 2005,27(11):1266-1269.
CHI Shichun, JIA Yufeng. Rowe's stress-dilatancy model modified for energy dissipation of particle breakage[J].Chinese Journal of Geotechnical Engineering 2005,27(11):1266-1269.
[15]王乃东,姚仰平. 粒状材料颗粒破碎的力学特性描述[J]. 工业建筑,2008, 38(8):17-20.
WANG Naidong, YAO Yangping. Mechanical description for granular materials exhibiting particle crushing[J].Industrial Construction 2008, 38(8):17-20.
[16]孔德志,张丙寅,孙逊. 人工模拟堆石料颗粒破碎应变的三轴试验研究[J].岩土工程学报, 2009,31(3):464-469
KONG Dezhi, ZHANG Bingyin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J].Chinese Journal of Geotechnical Engineering 2009,31(3): 464-469.

备注/Memo

备注/Memo:
收稿日期:2019-12-30 修改稿日期:2020-11-16
基金项目:陕西省科学技术一般基金资助项目(2020SF-431)
第一作者:王 帅(1993-),男,硕士研究生,主要从事土的结构性方面的研究. E-mail:1285525009@qq.com 通信作者:郅 彬(1972-),男,博士,副教授,主要从事黄土结构性、地基处理等方面的科研和教学工作.E-mail:xianzhibin@163.com

更新日期/Last Update: 2020-12-20