[1]于晓光,穆卓辉,邢国华.体内无粘结预应力混凝土梁受弯承载力计算模型研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):40-46.[doi:10.15986/j.1006-7930.2021.01.006]
 YU Xiaoguang,MU Zhuohui,XING Guohua.Study on calculation model of bending bearing capacity of unbonded prestressed concrete beams[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(01):40-46.[doi:10.15986/j.1006-7930.2021.01.006]
点击复制

体内无粘结预应力混凝土梁受弯承载力计算模型研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年01期
页码:
40-46
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Study on calculation model of bending bearing capacity of unbonded prestressed concrete beams
文章编号:
1006-7930(2021)01-0040-07
作者:
于晓光123穆卓辉3邢国华1
(1.长安大学 公路学院, 陕西 西安710064; 2.长安大学 旧桥检测与加固技术交通行业重点实验室, 陕西 西安710064; 3.内蒙古自治区交通建设工程质量监督局, 内蒙古 呼和浩特 010051)
Author(s):
YU Xiaoguang123 MU Zhuohui3 XING Guohua1
(1.School of Highway,Chang’an University, Xi’an 710064, China; 2.Key Laboratory of Bridge Detection & Reinforcement Technology of Ministry of Transport, Chang’an University, Xi’an 710064, China; 3.Inner Mongolia Communications Construction Engineering Quality Supervision Bureau, Hohhot 010051, China)
关键词:
无粘结预应力 曲率分布 塑性铰 抗弯承载力
Keywords:
unbonded prestressing curvature distribution plastic hinge flexural bearing capacity
分类号:
TU375.1
DOI:
10.15986/j.1006-7930.2021.01.006
文献标志码:
A
摘要:
以两点对称荷载作用下无粘结预应力混凝土简支梁为研究对象,基于混凝土梁的整体变形及塑性铰分布特点,通过对梁实际曲率分布进行简化后计算得出预应力筋的应力增量,进一步提出了无粘结预应力混凝土简支梁受弯承载力的计算方法.通过77根无粘结预应力混凝土梁的试验数据对建议抗弯承载力计算模型进行验证,并将计算结果与美国ACI318规范的计算模型及其它模型的计算结果进行了对比.结果表明:无粘结预应力混凝土梁受弯承载力的试验值与理论预测值之比的平均值为1.047,标准差为0.077,变异系数为0.073,二者吻合较好; 与其他计算模型的计算结果相比,本文建议计算模型较真实地反映了预应力混凝土梁的曲率分布,可更准确的计算无粘结预应力混凝土梁的抗弯承载力.
Abstract:
By selecting the simply supported concrete beam prestressed with unbonded steel tendons under four-point loading as the research object, the stress increment of prestressed reinforcement was calculated by simplifying the actual curvature distribution. And a calculation model of flexural bearing capacity of the unbonded prestressed concrete beam was put forward based on the overall deformation and plastic hinge distribution characteristics of the concrete beam. The flexural bearing capacity calculation model was verified by 77 unbonded prestressed concrete beams, and was compared with ACI 318 code and other model. Good agreement between experimental results and predicted results was achieved with an average ratio of test values to predicted values being 1.046, the variance being 0.071, and the coefficient of variation being 0.256. Compared with the other models, the proposed model in this paper reasonably reflects the real curvature distribution of the prestressed concrete beams, and the flexural bearing capacity can be calculated more accurately.

参考文献/References:

[1]汤永净,程付扬.无粘结部分预应力筋极限应力增量评析[J].工业建筑, 2009(1): 354-356.
TANG Yongjing,CHENG Fuyang. The analysis of ultimate stress incresment for partially prestressed with unbonded tendons[J].Industrial Construction,2009(1): 354-356.
[2]中华人民共和国住房和城乡建设部.无粘结预应力混凝土结构技术规程:JGJ92-2016[S].北京: 中国建筑工业出版社,2016.
MOHURD. Technical specification for concrete structures prestressed with unbonded tendons:JGJ92-2016[S].Beijing: China Architecture & Building Press, 2016.
[3]杜拱辰,陶学康.部分预应力混凝土梁无粘结筋极限应力的研究[J].建筑结构学报, 1985, 6(6): 2-13.
DU Gongchen, TAO Xuekang. Study on ultimate stress of unbonded tendons of partially prestressed concrete beams[J].Journal of Building Structures, 1985, 6(6): 2-13.
[4]宋永发, 王清湘.无粘结部分预应力高强混凝土梁正截面承载力计算[J].大连理工大学学报, 1996, 40(2): 224-229.
SONG Yongfa, WANG Qingxiang. Calculation of normal section bearing capacity for unbonded partially prestressed high-strength concrete beams[J].Journal of Dalian University of Technology, 1996, 40(2): 224-229.
[5]BAKER A L L. A plastic theory of design for ordinary reinforced and prestressed concrete including moment redistribution in continuous members[J].Magazine of Concrete Research, 1949, 1(2): 57-66.
[6]NAAMAN A E, ALKHAIRI F M. Stress at ultimate in un-bonded prestressing tendons: Patr1-evalutation of the state-of-art[J].ACI Structural Journal, 1991, 88(5): 95-108.
[7]PANELL F N. Ultimate moment of resistance of unbonded pre-stressed concrete beams[J].Magazine of Concrete Reseach, 1969, 21(66): 43-54.
[8]杜进生, 刘西拉. 基于结构变形的无粘结预应力筋应力变化研究[J].土木工程学报, 2003, 36(8): 12-19.
DU Jingsheng, LIU Xila. Research on the variations of unbonded prestressed tendon stresses based upon the structural deformation[J].China Civil Engineering Journal, 2003, 36(8): 12-19.
[9]申同生, 戴公连, 方淑君. 求解无粘结预应力混凝土梁力筋应力增量的能量法[J].中外公路, 2000, 20(5): 15-17.
SHEN Tongsheng, DAI Gonglian, FANG Shujun. Energy method for solving stress increases of unbonded prestressed concrete beams[J].Journal of China & Foreign Highway, 2000, 20(5): 15-17.
[10]郜剑峰. 无粘结预应力混凝土超静定结构力筋应力增量计算的能量法[J].长沙铁道学院学报, 2003, 21(1): 43-46.
GAO Jianfeng. The energy method of calculating stress growth quantity in statically indeterminate structure for unbonded pretressed concrete[J].Journal of Changsha Railway University, 2003, 21(1): 43-46.
[11]熊正元, 王一军. 无粘结预应力混凝土超静定结构力筋应力计算的能量法[J].建筑结构, 2003(4): 76-77.
XIONG Zhengyuan, WANG Yijun. The energy method of calculating stress in statically indeterminate structure for unbonede pretressed concrete[J], Construction Structure, 2003(4): 76-77.
[12]高月婷, 胡亚军. 无粘结预应力筋应力计算的能量法[J].铁道建筑, 2007(4): 16-18.
GAO Yueting, HU Yajun. Energy method for stress calculation of unbonded prestressed[J].Railway Engineering, 2007(4): 16-18.
[13]HARAJLI M H, HIJAZI S A. Evaluation of the ultimate steel stress in partially prestressed concrete members[J].PCI Journal, 1991, 36(1): 62-82.
[14]WARWARUK J, SOZEN M A, SIESS C P. Strength and behavior in flexure of prestressed concrete beams[J].Journal of Clinical Investigation, 1960, 57(3): 551-8.
[15]CORLEY W. Rotational capacity of reinforced concrete beams[J].Journal of the Structural Division, 1966, 92(5): 121-146
[16]MATTOCK, A H. Discussion of “Rotational Capacity of Concrete Beams.”[J].Journal of the Structural Division, l967, 93(2): 519-522.
[17]WHITNEY C S. Design of reinforced concrete members under flexure or combined flexure and direct compression[J].Journal Proceedings. 1937, 33(3):483-498.
[18]PANNELL F N, TAM A. The ultimate moment of resistance of unbonded prestressed concrete beams[J].Magazine of Concrete Research, 1976, 28(97): 203-208.
[19]LIU Jianxing, ZHANG Shu. The experimental study of the ultimate strength, crack and defection of unbonded partially prestressed concrete beams[J].Journal of Hunan University, 1987, 14(3): 1-15.
[20]王逸, 杜拱辰. 跨中集中荷载下部分预应力梁无粘结筋极限应力的研究[J].建筑结构学报, 1991, 12(6): 42-52.
WANG Yi, DU Gongchen, Study on ultimate stress of unbonded tendons of partially prestressed beams under concentrated load[J].Journal of Building Structures, 1991, 12(6): 42-52.
[21]LEE D H, KANG S K. Flexural strength of prestressed concrete members with unbonded tendons[J].Structural Engineering & Mechanics, 2011, 38(5): 675-696.
[22]李昕桐. HRB500级钢筋无粘结部分预应力混凝土梁受力性能试验研究[D].河北: 河北工业大学, 2012.
LI Xintong. Study on stress behavior of unbonded partially prestressed concrete beams with HRB500 bars[D].Hebei: Hebei University of Technology, 2012.
[23]YANG, K H, KANG T H K. Prediction of stress at ultimate in unbonded tendons based on an equivalent strain- distributionfactor[J].ACI Structural Journal, 2011, 108(2): 217-226.
[24]YANG K H, MUN J H, KIM G H. Flexural behavior of post-tensioned normal-strength lightweight concrete one-way slabs[J].Engineering Structures, 2013, 56: 1295-1307.
[25]ACI Committee 318. Building code requirements for structural concrete and commentary:ACI 318R-11[S].Detroit:American Concrete Institute, 2011.

备注/Memo

备注/Memo:
收稿日期:2018-10-23 修改稿日期:2021-01-13
基金项目:陕西省青年科技新星基金资助项目(2017KJXX-37); 中央高校基本科研业务费(自然科学类)基金资助项目(300102218510); 内蒙古自治区交通运输厅建设科技资金资助项目(NJ-2015-30)
第一作者:于晓光(1978-),男,高级工程师,博士研究生,主要从事工程结构分析.E-mail:349425055@qq.com
通讯作者:邢国华(1983-),男,教授,博士生导师,主要从事混凝土结构抗震及耐久性研究.E-mail:ghxing@chd.edu.cn
更新日期/Last Update: 2021-02-28