[1]刘 荔,刘 鑫,段梦婕,等.建筑环境中微生物对液滴蒸发影响的实验研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):126-131.[doi:10.15986/j.1006-7930.2021.01.017]
 LIU Li,LIU Xin,DUAN Mengjie,et al.Experimentalstudy on evaporation mechanism of indoor microbial droplets[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(01):126-131.[doi:10.15986/j.1006-7930.2021.01.017]
点击复制

建筑环境中微生物对液滴蒸发影响的实验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年01期
页码:
126-131
栏目:
出版日期:
2021-02-28

文章信息/Info

Title:
Experimentalstudy on evaporation mechanism of indoor microbial droplets
文章编号:
1006-7930(2021)01-0126-06
作者:
刘 荔13刘 鑫2段梦婕3
(1.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安 710055; 2.西安建筑科技大学 环境与市政工程学院,陕西 西安 710055; 3.清华大学 建筑学院,北京 100084; 4.中国轻工业西安设计工程有限责任公司,陕西 西安 710001)
Author(s):
LIU Li13 LIU Xin2 DUAN Mengjie3 et al
(1.School of Building Services Science and Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 2.School of Environmental and Municipal Engineering, Xi’an Univ. of Arch. & Tech., Xi’an 710055, China; 3.School of Architecture, Tsinghua University, Beijing 100084, China; 4.China Light Industry Xi’an Design Engineering Co.,Ltd., Xi’an 710001, China)
关键词:
液滴蒸发 吸湿性 芽孢 接触角
Keywords:
droplet evaporation hygroscopicity spores contact angle
分类号:
X51; O55; Q93
DOI:
10.15986/j.1006-7930.2021.01.017
文献标志码:
A
摘要:
建筑室内表面常见含不同微生物的液滴.已有研究往往将微生物液滴过度简化为纯水或盐溶液液滴,以体现环境湿度和组分中吸湿性盐离子等化学组分对蒸发速率的影响.本研究选择了通过测量浓度为107 CFU/ml的3种室内环境中的常见细菌所在液滴在室内常见表面上蒸发时的质量及接触角的变化,系统研究了细菌属种对液滴蒸发率、接触角等参数的量化影响.测量发现,同等条件下,在0.9%(w/v)氯化钠溶液液滴中加入不同微生物后,类干酪乳杆菌和大肠埃希氏杆菌可以降低蒸发率,延长蒸发时间约50%~60%; 枯草芽孢杆菌提高蒸发率,缩短蒸发时间约20%.实验结果表明芽孢能够显著提高液滴的液面张力; 微生物的存在使液滴在空气中的悬浮时间变长,预示着更大的空气扩散危险及室内环境的污染.
Abstract:
Indoor microbial environment essentially characterizes the human exposure to potential pathogens. Many microorganisms are emitted within droplets. Previous studies often oversimplify these droplets as droplets of pure water or NaCl solution.The impact of the microbial components on droplet evaporation is not clear. In this study, we chose three common bacteria in indoor environment. They were suspended in 0.9%(w/v)NaCl solutions with an initial concentration of 107 CFU/ml. We then measured the mass loss and contact angle variation of these droplets on a polyethylene surface that represents the common indoor surfaces with hydrophobic paint.Results reveal that Lactobacillus casei and Escherichia coli can slow down droplet evaporation, and the total evaporation time can be prolonged by about 50%~60%. Bacillus subtilis can accelerate the evaporation and shorten the evaporation time by about 20%; The presence of microorganisms makes the suspension time of the droplets in the air longer, indicating a greater risk of dispersion and contamination of the indoor environment.

参考文献/References:

[1]LIU L. Expiratory droplet exposure between individuals in a ventilated room[J].HKU Theses Online, 2011
[2]JONES R M, BROSSEAU L M. Aerosol transmission of infectious disease[J].Journal of Occupational and Environmental medicine, 2015, 57(5): 501-508.
[3]OTTER J A, DONSKEY C, YEZLI S, et al. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination[J].Journal of Hospital Infection, 2016, 92(3): 235-250.
[4]COWLING B J. Airborne transmission of influenza: Implications for control in healthcare and community settings[J].Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2012, 54(11): 1578.
[5]BRUTIN D, STAROV V. Recent advances in droplet wetting and evaporation[J].Chemical Society Reviews, 2018, 47(2): 558-585.
[6]RASHISI S, MAHINA O, LANGURI E M. Applications of nanofluids in condensing and evaporating systems[J].Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 2027-2039.
[7]SAZHIN S S. Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems[J].Fuel, 2017, 196: 69-101.
[8]NATALE D, F, D’Addio L et al. Effect of gas temperature on the capture of charged particles by oppositely charged water droplets[J].Aerosol Science and Technology, 2016, 50(2): 110-117.
[9]KIPER I, FULCRAND R, PIRAT C, et al. Sessile drop evaporation on(super)hydrophobic surfaces: Effect of low pressure on the contact line dynamics[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482: 617-623.
[10]FUKATANI Y, OREJON D, KITA Y, et al. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation[J].Physical Review E, 2016, 93(4): 043103.
[11]张凯, 王依霖, 徐学锋. 基底厚度对蒸发液滴表面温度分布的影响[J].化工学报, 2015, 66(2): 703-708.
ZHANG Kai, WANG Yilin, XU Xuefeng. Effect of substrate thickness on surface temperature distribution of evaporating droplets[J].CIESC Journal, 2015, 66(2): 703-708.
[12]NASCIMENTO R M, COTTIN-BIZONNE C, PIRATC, et al. Water drop evaporation on mushroom-like superhydrophobic surfaces: Temperature effects[J].Langmuir, 2016, 32(8): 2005-2009.
[13]NELLIMOOTTIL T T, RAO P N, GHOSH S S, et al. Evaporation-induced patterns from droplets containing motile and nonmotile bacteria[J].Langmuir, 2007, 23(17): 8655-8658.
[14]XIE X, LI Y, ZHANG T, et al. Bacterial survival in evaporating deposited droplets on a teflon-coated surface[J].Applied Microbiology & Biotechnology, 2006, 73(3): 703-712.
[15]REDROW J, MAO S, CELIK I, et al. Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough[J].Building and Environment, 2011, 46(10): 2042-2051.
[16]VEJERANO E P, MARR L C. Physico-chemical characteristics of evaporating respiratory fluid droplets[J].Journal of The Royal Society Interface, 2018, 15(139): 20170939.
[17]BOURGES-MONNIER C, SHANAHAN M E R. Influence of evaporation on contact angle[J].Langmuir, 1995, 11(7): 2820-2829.
[18]王晖, 顾帼华, 邱冠周. 接触角法测量高分子材料的表面能[J].中南大学学报(自然科学版), 2006, 37(5): 942-947.
WANG Hui, GU Yuhua, QIU Guanzhou. Measurement of surface energy of polymer materials by contact angle method[J].Journal of Central South University: Natural Science, 2006, 37(5): 942-947.
[19]ERBIL H Y. Evaporation of pure liquid sessile and spherical suspended drops: A review[J].Advances in Colloid & Interface Science, 2012, 170(1-2): 67-86.
[20]LIU L, WEI J, LI Y, et al.Evaporation and dispersion of respiratory droplets from coughing[J].Indoor Air, 2017, 27(1): 179-190.
[21]NGUYEN T A H, NGUYEN A V, HAMPTON M A, et al. Theoretical and experimental analysis of droplet evaporation on solid surfaces[J].Chemical engineering science, 2012, 69(1): 522-529.
[22]DOURSAT C, LECOQ L, LAGUERRE O, et al. Droplet evaporation on a solid surface exposed to forced convection: Experiments, simulation and dimensional analysis[J].International Journal of Heat and Mass Transfer, 2017, 113: 1234-1245.
[23]LAGUERRE O, LECOQ L, ZOZ F, et al. Influence of the air humidity on the drying of a liquid droplet on a solid plate and on bacterial destruction[J].Journal of food engineering, 2017, 212: 76-86.
[24]MCHALE G, AQIL S, SHIRTCLIFFE N J, et al. Analysis of droplet evaporation on a superhydrophobic surface[J].Langmuir, 2005, 21(24): 11053-11060.
[25]张馨语.室内微生物气溶胶蒸发特性影响研究[D].西安:西安建筑科技大学, 2017.
ZHANG Xinyu. Study on the effects of indoor microbial aerosol evaporation characteristics[D]. Xi’an:Xi’an Univ. of Arch. & Tech. 2017.

备注/Memo

备注/Memo:
收稿日期:2019-05-30 修改稿日期:2020-01-13
基金项目:国家重点研发计划基金资助项目(2017YFC0702702); 国家自然科学基金资助项目(51778520); 国家杰出青年科学基金资助项目(51425803)
第一作者:刘荔(1984-),男,副教授,主要从事健康建筑室内污染物的呼吸道精确暴露机理与控制方法的研究.E-mail:liuli_archi@tsinghua.edu.cn
更新日期/Last Update: 2021-02-28