[1]崔郁雪,杨忠年,时 伟,等.冻融循环下非饱和膨胀土一维土柱模型试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(03):393-403.[doi:10.15986/j.1006-7930.2021.03.011]
 CUI Yuxue,YANG Zhongnian,SHI Wei,et al.Experimental study on one dimensional soil column model of unsaturated expansive soil under freeze-thaw cycles[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(03):393-403.[doi:10.15986/j.1006-7930.2021.03.011]
点击复制

冻融循环下非饱和膨胀土一维土柱模型试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年03期
页码:
393-403
栏目:
出版日期:
2021-06-28

文章信息/Info

Title:
Experimental study on one dimensional soil column model of unsaturated expansive soil under freeze-thaw cycles
文章编号:
1006-7930(2021)03-0393-11
作者:
崔郁雪1杨忠年1时 伟1凌贤长12涂志斌1
(1.青岛理工大学 土木工程学院,山东 青岛 266033; 2. 哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150090)
Author(s):
CUI Yuxue1YANG Zhongnian1SHI Wei1LING Xianzhang12TU Zhibin1
(1.Department of Civil Engineering,Qingdao University of Technology,Qingdao,266033,China; 2.Department of Civil Engineering,Harbin Institute of Technology,Harbin,150001,China)
关键词:
冻融循环 膨胀土 土压力 孔隙水压力 竖向位移
Keywords:
freeze-thaw cycles expansive soil earth pressure pore water pressure vertical displacement
分类号:
TU432
DOI:
10.15986/j.1006-7930.2021.03.011
文献标志码:
A
摘要:
通过一维土柱模型对非饱和膨胀土进行冻融循环试验,分析了冻融循环过程中不同深度处温湿度、土压力、孔隙水压力和竖向位移的变化规律.试验结果表明:(1)土体在冻结过程中温度可分为过冷、跳跃、恒定、递降和稳定5个不同的变化阶段,存在明显跳跃点和冻结点,而升温过程并无明显的过热或突变现象出现.(2)冻结过程中,未冻水含量随温度下降逐渐降低,土体冻结点之后未冻水含量降低速度变快,整个冻融过程始终有未冻水存在.整个冻融过程中不同深度处的土体的温度和未冻水含量的变化均存在滞后现象.(3)温度场和水分场的变化会导致土体应力状态的改变,从而导致土压力和孔隙水压力的变化.其中第一次冻融对土压力和孔隙水压力的影响最大,随着冻融循环次数的增加变化渐缓.(4)冻融过程土体的竖向位移会发生波浪形变化,其中水分相态的转变对位移的影响最大,土颗粒及矿物成分的热胀冷缩带来的影响最小.
Abstract:
This paper uses a one-dimensional soil column model to carry out freeze-thaw cycle tests on unsaturated expansive soils,and analyzes the changes in temperature and humidity,earth pressure,pore water pressure and vertical displacement at different depths during the freeze-thaw cycle. The test results show that:(1)During the freezing process,the soil temperature can be divided into five different stages: supercooling,jumping,constant,descending,and stable,and there are obvious jumping points and freezing points. There is no obvious overheating or sudden change during the heating process.(2)During the freezing process,the unfrozen water content gradually decreases with the decrease of temperature. After the freezing point of the soil,the unfrozen water content decreases faster,and there is always unfrozen water throughout the freezing and thawing process. There is a hysteresis phenomenon in the changes of soil temperature and unfrozen water content at different depths throughout the freeze-thaw process.(3)Changes in the temperature field and moisture field will cause changes in the stress state of the soil,which will lead to changes in earth pressure and pore water pressure. Among them,the first freeze-thaw has the greatest influence on these two pressures,and the changes gradually become slow with the increase of the number of freeze-thaw cycles.(4)During the freezing and thawing process,the vertical displacement of the soil will change in a wave shape. The transformation of the water phase has the greatest influence on the displacement,and the thermal expansion and contraction of soil particles and mineral components have the least influence.

参考文献/References:

[1]SONG W,ZHANG Y,LI B,et al. A lattice Boltzmann model for heat and mass transfer phenomena with phase transformations in unsaturated soil during freezing process[J]. International Journal of Heat and Mass Transfer,2016,94: 29-38.
[2]徐学祖,王家澄,张立新. 冻土物理学[M]. 北京: 科学出版社,2010.
XU Xuezu,WANG Jiacheng,ZHANG Lixin. Frozen soil physics[M]. Beijing: Science Press,2010.
[3]ZHANGT,ARMSTRONG R L. Soil freeze/thaw cycles over snow‐free land detected by passive microwave remote sensing[J]. Geophysical Research Letters,2001,28(5): 763-766.
[4]石刚强. 严寒地区高速铁路路基冻胀和工程对策研究[D]. 兰州:兰州大学,2014.
SHI Gangqiang. Research on subgrade frost heave of high-speed railway in cold regions and its engineering countermeasures[D]. Lanzhou: Lanzhou University,2014.
[5]FREDLUND D G,RAHARDJO H. Soil mechanics for unsaturated soils[M]. John Wiley & Sons,1993.
[6]包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报,2004,26(1):1-15.
BAO Chenggang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Rock Mechanics and Engineering,2004,26(1):1-15.
[7]许雷,刘斯宏,鲁洋,等. 冻融循环下膨胀土物理力学特性研究[J]. 岩土力学,2016(S2):167-174.
XU Lei,LIU Sihong,LU Yang,et al. Physico-mechanical properties of expansive soil under freeze-thaw cycles[J]. Rock and Soil Mechanics,2016(S2):167-174.
[8]刘辉. 季节性冻土地区高速铁路设计施工技术[J]. 铁道工程学报,2017,34(10):1-10.
LIU Hui. Design and construction technology of high speed railway in seasonal frozen soil region[J]. Journal of Railway Engineering Society,2017,34(10):1-10.
[9]LU Y,LIU S,ALONSO E,et al. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles[J]. Cold Regions Science and Technology,2019,157: 206-214.
[10]LU Y,LIU S,WENG L,et al. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles[J]. Engineering Geology,2016,208: 93-99.
[11]YANG Z,ZHANG L,LING X,et al. Experimental study on the dynamic behavior of expansive soil in slopes under freeze-thaw cycles[J].Cold Regions Science and Technology,2019,163: 27-33.
[12]许雷,鲁洋,宗佳敏,等. 冻融循环下南阳膨胀土直剪试验[J]. 南水北调与水利科技,2015(5):922-925.
XU Lei,LU Yang,ZONG Jiamin,et al. Direct shear test on expansive clay in Nanyang under freeze-thaw cycles[J]. South-to-North Water Transfers and Water Science & Technology,2015(5):922-925.
[13]许雷,薛洋,鲁洋,等. 不同冻结温度条件下膨胀土冻融循环试验[J]. 水资源与水工程学报,2016,27(5):189-193.
XU Lei,XUE Yang,LU Yang,et al. Test of freeze-thaw cycle of expansive soil under condition of different freezing temperatures[J]. Journal of Water Resources & Water Engineering,2016,27(5):189-193.
[14]TANG L,CONG S,GENG L,et al. The effect of freeze-thaw cycling on the mechanical properties of expansive soils[J]. Cold Regions Science and Technology,2018,145: 197-207.
[15]覃小华,刘东升,宋强辉,等. 降雨条件下一维土柱垂直入渗模型试验研究及其渗透系数求解[J]. 岩石力学与工程学报,2017,36(2):475-484.
QIN Xiaohua,LIU Dongsheng,SONG Qianghui,et al. Experimental study on one-dimensional vertical infiltration in soil column under rainfall and the derivation of permeability coefficient[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):475-484.
[16]HUANG K,TORIDE N,VAN Genuchten M T. Experimental investigation of solute transport in large,homogeneous and heterogeneous,saturated soil columns[J]. Transport in Porous Media,1995,18(3): 283-302.
[17]MUHAMMAD Z,ZHANG W,HONGBIN Z,et al. An experimental study on solute transport in one-dimensional clay soil columns[J]. Geofluids,2017(4):17.
[18]何平,程国栋,俞祁浩,等. 饱和正冻土中的水、热、力场耦合模型[J]. 冰川冻土,2000(2):135-138.
HE Ping,CHENG Guodong,YU Qihao,et al. Acouple model of heat,water and stress fields of saturated soil during freezing[J]. Journal of glaciology and geocryology,2000(2):135-138.
[19]何平,程国栋,朱元林.土体冻结过程中的热质迁移研究进展[J].冰川冻土,2001(1):92-98.
HE Ping,CHENG Guodong,ZHU Yuanlin. Theprogress of study on heat and mass transfer in freezing soils[J]. Journal of glaciology and geocryology,2001(1):92-98.
[20]王建平,王文顺,史天生.人工冻结土体冻胀融沉的模型试验[J].中国矿业大学学报,1999,28(4):3-5.
WANG Jianping,WANG Wenshun,SHI Tiansheng. Model experiment of frost heave and thawing settlement of artificially frozen soils[J]. Journal of China University of Mining & Technology,1999,28(4):3-5.
[21]FAROUKI O T. The thermal properties of soils in cold regions[J]. Cold Regions Science and Technology,1981,5(1): 67-75.
[22]崔广心. 厚表土层湿土结冰温度与冻结壁厚度确定的研究[J]. 中国矿业大学学报,1997(3):1-4.
CUI Guangxin. Study on freezing point of wet soil and thickness determining of freezing wall in deep alluvium[J]. Journal of China University of Mining & Technology,1997(3):1-4.
[23]LAI Y,WU D,ZHANG M. Crystallization deformation of a saline soil during freezing and thawing processes[J]. Applied Thermal Engineering,2017,120: 463-473.
[24]BITTELLI M,FLURY M,CAMPBELL G S. A thermodielectric analyzer to measure the freezing and moisture characteristic of porous media[J]. Water resources research,2003,39(2):1-10.
[25]毛雪松. 多年冻土地区路基水热力场耦合效应研究[D]. 西安:长安大学,2004.
MAO Xuesong. Study on coupling model of the moisture-heat-stress fields in the permafrost subgrade[D]. Xian: Chang’an University,2004.
[26]CHRIST M,KIM Y C. Experimental study on the physical-mechanical properties of frozen silt[J]. KSCE Journal of Civil Engineering,2009,13(5): 317-324.
[27]WATANABE K,MIZOGUCHI M. Amount of unfrozen water in frozen porous media saturated with solution[J]. Cold Regions Science and Technology,2002,34(2): 103-110.
[28]WATANABE K,WAKE T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology,2009,59(1): 34-41.
[29]LIU B,LI D. A simple test method to measure unfrozen water content in clay-water systems[J]. Cold regions science and technology,2012,78: 97-106.
[30]ZHOU X,ZHOU J,KINZELBACH W,et al. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR[J]. Water Resources Research,2014,50(12): 9630-9655.
[31]王丽霞,胡庆立,凌贤长,等. 青藏铁路冻土未冻水含量与热参数试验[J].哈尔滨工业大学学报,2007,39(10): 1660-1663.
WANG Lixia,HU Qingli,LING Xianzhang,et al. Test study on unfrozen water content and thermal parameters of Qinghai-Tibet railway frozen silty clay[J]. Journal of Harbin institute of Technology,2007,39(10):1660-1663.
[32]张宝平,何金良,康鹏,等. 冻土冲击特性的试验研究[J]. 中国电机工程学报,2008,28(16):143-147.
ZHANG Baoping,HE Jinliang,KANG Peng,et al. Experimental study on impulse characteristics of frozen soil[J]. Proceedings of the CSEE,2008,28(16):143-147.
[33]ZHOU G,ZHOU Y,HU K,et al. Separate-ice frost heave model for one-dimensional soil freezing process[J]. Acta Geotechnica,2018,13(1): 207-217.
[34]ULITSKII V M,SAKHAROV I I,PARAMONOV V N,et al. Bed-structure system analysis for soil freezing and thawing using the termoground program[J]. Soil mechanics and foundation engineering,2015,52(5): 240-246.
[35]张钊,吴紫汪. 渠道基土冻结时温度场和应力场的数值模拟[J]. 冰川冻土,1993(2):331-338.
ZHANG Zhao,WU Ziwang. Numerical analysis of temperature and stress on the canal subsoil during freezing[J]. Journal of glaciology and geocryology,1993(2):331-338.
[36]ZHANG L,MA W,YANG C,et al. Investigation of the pore water pressures of coarse-grained sandy soil during open-system step-freezing and thawing tests[J]. Engineering geology,2014,181: 233-248.
[37]肖东辉,马巍,赵淑萍,等. 冻融与荷载作用下土体内部孔隙水压力、水分变化规律及其模型试验研究[J]. 岩石力学与工程学报,2017,36(4):977-986.
XIAO Donghui,MA Wei,ZHAO Shuping,et al. Research on pore water pressure and moisture content in soil subjected to freeze-thaw cycles and loading action by model test[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(4):977-986.
[38]LAI Y,XU X,DONG Y,et al. Present situation and prospect of mechanical research on frozen soils in China[J]. Cold Regions Science and Technology,2013,87: 6-18.
[39]ZHANG Y,MICHALOWSKI R L. Thermal-hydro-mechanical analysis of frost heave and thaw settlement[J]. Journal of geotechnical and geoenvironmental engineering,2015,141(7): 1-9.
(编辑 吴海西 沈 波)

相似文献/References:

[1]朱方之1,马志鸣2,蒋连接1,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(05):643.[doi:10.15986/j.1006-7930.2016.05.005]
 ZHU Fangzhi,MA Zhiming,JIANG Lianjie,et al.Study of influence of sustained load and freeze-thaw cycling on the bond behavior of steel reinforced concrete[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(03):643.[doi:10.15986/j.1006-7930.2016.05.005]
[2]任战鹏,牛荻涛,吴敬涛,等.极端温度冻融循环对混凝土耐久性的影响[J].西安建筑科技大学学报(自然科学版),2018,50(02):220.[doi:10.15986/j.1006-7930.2018.02.011]
 REN Zhanpeng,NIU Ditao,WU Jingtao,et al.Effect of freezing-thawing cycle on the durability of concrete under Extreme Environment Conditions[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(03):220.[doi:10.15986/j.1006-7930.2018.02.011]
[3]时伟,张亮,杨忠年,等.冻融循环条件下膨胀土力学特性试验研究[J].西安建筑科技大学学报(自然科学版),2019,51(04):480.[doi:10.15986/j.1006-7930.2019.04.003]
 SHI Wei,ZHANG Liang,YANG Zhongnian,et al.Experimental study on mechanical properties of expansive soilof artificial preparation under freeze-thaw cycle conditions[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(03):480.[doi:10.15986/j.1006-7930.2019.04.003]
[4]郭书源,赵 敏,武 昕.冻融循环下硅质聚苯板体系保温性能研究[J].西安建筑科技大学学报(自然科学版),2020,52(02):273.[doi:10.15986/j.1006-7930.2020.02.017]
 GUO Shuyuan,ZHAO Min,WU Xin.Study on heat-insulated property of silicon polystyrene board under freeze-thaw cycles[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):273.[doi:10.15986/j.1006-7930.2020.02.017]
[5]翟聚云,樊姝芳,言志信,等.建筑垃圾膨胀土回填地基工程特性及应用研究[J].西安建筑科技大学学报(自然科学版),2020,52(03):321.[doi:10.15986/j.1006-7930.2020.03.003]
 ZHAI Juyun,FAN Shufang,YAN Zhixin,et al.Study on the engineering characteristics and application of construction waste expansive soil backfill foundation[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):321.[doi:10.15986/j.1006-7930.2020.03.003]
[6]周志清,王定鹏.建筑垃圾改良膨胀土填筑路基可行性研究[J].西安建筑科技大学学报(自然科学版),2021,53(05):716.[doi:10.15986/j.1006-7930.2021.05.014 ]
 ZHOU Zhiqing,WANG Dingpeng.Feasibility study on filling roadbed with expansive soil improved by construction waste[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(03):716.[doi:10.15986/j.1006-7930.2021.05.014 ]
[7]陆春华,冯晨阳,平 安,等.对基于动弹性模量的海工混凝土抗冻损伤评价[J].西安建筑科技大学学报(自然科学版),2023,55(04):563.[doi:10.15986/j.1006-7930.2023.04.011 ]
 LU Chunhua,FENG Chenyang,PING An,et al.Damage evaluation of frost resistance of marine concrete based on dynamic elastic modulus[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(03):563.[doi:10.15986/j.1006-7930.2023.04.011 ]
[8]郑方,邵生俊,王松鹤,等.冻融循环对黄土剪切屈服与破坏行为的影响[J].西安建筑科技大学学报(自然科学版),2023,55(05):669.[doi:10.15986/j.1006-7930.2023.05.005]
 ZHENG Fang,SHAO Shengjun,WANG Songhe,et al.Effects of freeze-thaw cycles on shear yield and failure behavior of loessU[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(03):669.[doi:10.15986/j.1006-7930.2023.05.005]
[9]刘海翔,柴明霞,马艳霞,等.冻融循环条件下细粒硫酸盐渍土盐冻胀力学特性试验研究[J].西安建筑科技大学学报(自然科学版),2024,56(01):23.[doi:10.15986/j.1006-7930.2024.01.004]
 LIU Haixiang,CHAI Mingxia,MA Yanxia,et al. Experimental study on salt frost heaving mechanical properties of fine-grained sulfate saline soil under freeze-thaw cycle conditions [J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(03):23.[doi:10.15986/j.1006-7930.2024.01.004]
[10]刘华,张雨轩,王松鹤,等.垃圾渗滤液侵入黄土的冻结温度演变特征试验研究[J].西安建筑科技大学学报(自然科学版),2024,56(02):192.[doi:10.15986/j.1006-7930.2024.02.005]
 LIU Hua,ZHANG Yuxuan,WANG Songhe,et al.Experimental study on freezing temperature evolution characteristics of loess contaminated by landfill leachate[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(03):192.[doi:10.15986/j.1006-7930.2024.02.005]
[11]郭从洁,时 伟,杨忠年,等.冻融作用下初始含水率对膨胀土边坡稳定性的影响研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):69.[doi:10.15986/j.1006-7930.2021.01.010]
 GUO Congjie,SHI Wei,YANG Zhongnian,et al.Research on the influence of initial moisture contents on the stability of the expansive soil slope under freezethaw cycles[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(03):69.[doi:10.15986/j.1006-7930.2021.01.010]

备注/Memo

备注/Memo:
收稿日期:2020-11-24 修改稿日期:2021-05-04
基金项目:国家重大仪器开发项目(41627801); 山东省重点研发项目(2019GHY112075)
第一作者:崔郁雪(1996-),女,硕士生,主要从事特殊土力学方面研究.E-mail:cyx9656@foxmail.com
通信作者:杨忠年(1985-),男,博士,副教授,主要从事特殊土力学方面研究.E-mail:yzhnqd@qut.edu.cn
更新日期/Last Update: 2021-06-28