[1]景鹏飞,谢静超,徐 鑫,等.极端热湿气候区相变屋顶隔热性能优化分析[J].西安建筑科技大学学报(自然科学版),2021,53(06):887-896.[doi:10.15986/j.1006-7930.2021.06.013 ]
 JING Pengfei,XIE Jingchao,XU Xin,et al.Optimization analysis of thermal insulation performance of phase change roof in extreme hot-humid region[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):887-896.[doi:10.15986/j.1006-7930.2021.06.013 ]
点击复制

极端热湿气候区相变屋顶隔热性能优化分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
887-896
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Optimization analysis of thermal insulation performance of phase change roof in extreme hot-humid region
文章编号:
1006-7930(2021)06-0887-10
作者:
景鹏飞1谢静超1徐 鑫1张召锋2崔 娜3
(1.北京工业大学 绿色建筑环境与节能技术北京市重点实验室,北京 100124; 2.陕西建工安装集团有限公司,陕西 西安 710068; 3.中国京冶工程技术有限公司,北京 100088)
Author(s):
JING Pengfei1XIE Jingchao1XU Xin1ZHANG Shaofeng2CUI Na3
(1.Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology,Beijing University of Technology, Beijing 100124,China; 2.SCEGC Installation Group Co., Ltd.,Xi'an 710068, China; 3.China Jingye Engineering Co., Ltd.,Beijing 100088, China)
关键词:
相变 衰减度 延迟时间
Keywords:
phase change attenuation degree delay time
分类号:
TU111
DOI:
10.15986/j.1006-7930.2021.06.013
文献标志码:
A
摘要:
为顺应南海岛礁开发建设与可持续发展,针对该地区建筑内部空调负荷较大,传统围护结构节能效果较差的问题.提出将相变屋顶应用于该地区,利用风洞试验测试探究其在不同辐射强度、相变层厚度和水平风速条件下的传热特性.并结合Matlab模拟进一步确定适合该地区的相变层应用形式、厚度及相变温度,结果表明:增大辐射强度可增加屋顶相变层融化和凝固初始阶段的外表面温升速率; 增大相变层厚度及风速均可明显增加延迟时间,而风速对传热衰减度的影响不明显; 当相变层厚度由0 mm增加至40 mm时,各风速下的传热延迟时间平均增加1.6 h,当风速由自然对流增加到3 m/s时,屋顶的传热延迟时间平均减小0.7 h; 相变层在室外侧时可更好地降低内外表面温度并提高屋顶的传热衰减度,相比于相变层在室内侧时传热衰减度提高了1.1倍,内表面峰值温度降低1.6 ℃; 相变层厚度不应超过30 mm; 相变温度区间处于34~36 ℃时传热衰减度最大,为4.73,隔热效果最好.
Abstract:
In order to comply with the development and sustainable development of islands and reefs in the South China Sea, in view of the large air conditioning load in the buildings and the poor energy-saving effect of traditionalenvelope structure in the region, this paper proposes to apply the phase change roof to the region, and uses the wind tunnel test to explore its heat transfer characteristics under different radiation intensities, phase change layer thicknesses and horizontal wind speeds, and then, combined with Matlab simulation to further determine the application form, thickness and phase transition temperature of the phase change layer suitable for this area. The results show that increasing the radiation intensity can increase the temperature rise rate of the outer surface of the roof phase change layer at the initial stage of melting and solidification, and increasing the thickness of phase change layer and wind speed can significantly increase the delay time, but the effect of wind speed on heat transfer attenuation is not obvious. When the thickness of the phase change layer increases from 0 mm to 40 mm, the heat transfer delay time at each wind speed increases by an average of 1.6 h. When the wind speed increases from natural convection to 3 m/s, the heat transfer delay time of the roof decreases by an average of 0.7 h.When the phase change layer is on the outdoor side, it can better reduce the internal and external surface temperature and increase the heat transfer attenuation of the roof. Compared with the phase change layer on the indoor side, the heat transfer attenuation is increased by 1.1 times, and the peak temperature of the inner surface is reduced by 1.6 ℃; the thickness of the phase change layer should not exceed 30 mm; when the phase change temperature range is 34~36 ℃, the heat transfer attenuation is the largest, which is 4.73, and the heat insulation effect is the best.

参考文献/References:

[1] 朱志明,杨红,谢静超.极端热湿气候区的建筑屋面节能构造浅析[J].中国建筑防水,2017,23:26-31.
ZHU Zhiming,YANG Hong,XIE Jingchao.Analysis on energy saving structure of building roof suitable in extreme hot and humid climate area[J].China Building Water proofing,2017,23:26-31.
[2]刘加平.建筑物理[M].北京:中国建筑工业出版社,2015.
LIU Jiaping.Architectural physics[M].Beijing: China Architecture & Industry Press,2015.
[3]SOUBDHANT Feuillardt.Badef.Experimental evaluation of insulation material in roofing system under tropical climate[J].Solar Energy,2005,79(3):311-320.
[4]BIWOLEPH Woloszyn, M.POMPEOC.Heat transfers in a double-skin roof ventilated by natural convection in summertime[J].Energy Buildings,2008,40(8):1487-1497.
[5]项铮,储依.几种屋顶绿化形式的隔热及节能效果研究[J].土木建筑与环境工程,2011(增刊):42-44.
XIANG Zheng,CHU Yi.Study on heat insulation and energy saving effect of several roof greening forms[J].Journal of Civil and Environmental Engineering,2011(S):42-44.
[6]孙峙峰,赵耀华,徐伟,等.相变蓄冷技术在公共建筑太阳能空调系统中的应用研究[J].太阳能学报,2019,(40)11:3148-3155.
SUN Shifeng,ZHAO Yaohua,XU Wei,et al.Application study on phase-change storage of solar air conditioning system in public buildings[J].Acta Energiae Solaris Sinica,2019,(40)11:3148-3155.
[7]谢静超,邵腾,李悦,等.相变构件导热系数测定方法的研究[J].西安建筑科技大学学报,2013,45(2):192-198.
XIE Jingchao,SHAO Teng,Li Yue,et al.Reserch on thermal conductivity measurement of PCM components[J].J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(2):192-198.
[8]付舜宇,杨英英,武卫东.相变材料应用于建筑围护结构中定型封装方法研究进展[J].化工新型材料,2020.
FU Shunyu,YANG Yingying,WU Weidong,A review of packaging methods of phase change materials in building envelopes[J].New Chemical Materials,2020.
[9]乔宇豪,鲍嘉阳,刘衍,等.典型外墙构造复合相变层的热工性能研究[J].建筑节能,2020,48(6):1994-2021.
QIAO Yuhao,BAO Jiayang,LIU Heng,et al.Investigation of thermal performance of typical exterior wall structure with PCMs layer[J].Building Energy Efficiency,2020,48(6):1994-2021.
[10]贾敬芝.近零能耗建筑中相变建筑材料的研究进展[J].暖通空调,2021,51(2):47-54.
JIA Jingzhi.Review on phase change building materials in nearly zero energy buildings[J].Heating Ventilating & Air Conditioning,2021,51(2):47-54.
[11]叶海,王钰君,钱锋.相变蓄能围护结构的冬季调温性能实验研究[J].建筑科学,2020,36(4):99-106.
YE Hai,WANG Yujun,QIAN Feng.Experimental study on temperature adjusting performance of envelope structure with PCM energy storage in winter[J].Building Science,2020,36(4):99-106.
[12]罗振宇,朱娜,胡乃帅,等.双层定型相变围护结构夏季热特性实验研究[J].建筑科学,2020,36(8):37-42.
LUO Zhenyu,ZHU Na,HU Naishuai,et al.An experimental study on thermal characteristics of shape stabilized phase change material in summer[J].Building Science,2020,36(8):37-42.
[13]刘加平,罗戴维,刘大龙.热湿气候区建筑防热研究进展[J].西安建筑科技大学学报(自然科学版),2016,48(1):1-9.
LIU Jiaping,LUO Daiwei,LIU Dalong.Review of building thermal protection in the hot and humid climate[J].J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(1):1-9.

备注/Memo

备注/Memo:
收稿日期:2021-04-11修改稿日期:2021-11-01
基金项目:国家自然科学基金重大项目(51590912); 国家“十三五”重点研发计划课题(2018YFC0704505)
第一作者:景鹏飞(1995-),男,硕士生,主要从事建筑热工方面的研究.E-mail:1440134581@qq.com 通信作者:谢静超(1976-),女,教授,主要从事建筑热工、相变蓄热技术及室内空气品质方面的研究.E-mail:xiejc@bjut.edu.cn

更新日期/Last Update: 2021-12-20