[1]曹 也,李辰琦,周宏敞.严寒地区光伏复合墙体冬季主被动热利用模式研究[J].西安建筑科技大学学报(自然科学版),2021,53(06):927-933.[doi:10.15986/j.1006-7930.2021.06.018 ]
 CAO Ye,LI Chenqi,ZHOU Hongchang.Study on active and passive heat utilization mode of photovoltaic wall in winter in severe cold area[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(06):927-933.[doi:10.15986/j.1006-7930.2021.06.018 ]
点击复制

严寒地区光伏复合墙体冬季主被动热利用模式研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
53
期数:
2021年06期
页码:
927-933
栏目:
出版日期:
2021-12-20

文章信息/Info

Title:
Study on active and passive heat utilization mode of photovoltaic wall in winter in severe cold area
文章编号:
1006-7930(2021)06-0927-07
作者:
曹 也1李辰琦2周宏敞3
(1.沈阳建筑大学 市政与环境工程学院,辽宁 沈阳 110168; 2.沈阳建筑大学 建筑与规划学院,辽宁 沈阳 110168; 3.国家能源集团 绿色能源与建筑研究中心,北京 102211)
Author(s):
CAO Ye1 LI Chenqi2 ZHOU Hongchang3
(1.School of municipal and environmental engineering, Shenyang Jianzhu University, Shenyang 110168, China; 2.School of architecture and planning, Shenyang Jianzhu University, Shenyang 110168, China; 3.Green energy and Building Research Center, CHN Energy, Beijing 102211,China)
关键词:
光伏复合墙体 热利用 新风系统 供热效率
Keywords:
photovoltaic wall heat utilization fresh air system heating efficiency
分类号:
TU111.4; TK519
DOI:
10.15986/j.1006-7930.2021.06.018
文献标志码:
A
摘要:
光伏复合墙体是光伏建筑一体化(BIPV)的应用形式之一,凭借其特殊的构造体系,具有冬季保温、夏季隔热的性能.基于沈阳地区实验装置的监测数据,研究光伏复合墙体冬季温度变化规律,通过实测和模拟,量化了主被动两种热利用方式的供热量和供热效率.冬季太阳直射条件下,南墙光伏组件的温度可达到45~55 ℃,空气间层温度可达到35~45 ℃.在被动模式下,光伏复合墙体内的空气与室内空气自然循环,适用于空气间层温度高于30 ℃工况,基于对比实验装置,发现相对于未使用光伏复合墙体的B建筑,应用光伏复合墙体内循环模式的A建筑可节约36%采暖能耗,模拟发现在立冬日的供热效率为14%.在主动模式下,光伏复合墙体与新风机结合,新风机启停受控于空气间层温度,启动温度为30 ℃,停止温度为28 ℃,实际应用于沈阳某办公建筑,光伏复合墙体面积为8.64 m2.实测结果表明11月、2月和3月光伏复合墙体的新风机每日工作时间平均为5 h,供热效率约为22%,供热量为17.8 MJ,单位面积日均供热量为2.1 MJ/(m2·d).
Abstract:
Photovoltaic wall is one of the application forms of BIPV. With its special structure system, it has the performance of heat preservation in winter and heat insulation in summer. Based on the monitoring data of the experimental device in Shenyang, the paper studies the winter temperature variation of the photovoltaic wall. Through actual measurement and simulation, the heating capacity and efficiency of the active and passive heat utilization methods are quantified. Under direct sunlight in winter, the temperature of photovoltaic modules on the south wall can reach 45~55 ℃, and the temperature of air interlayer can reach 35~45 ℃. In the passive mode, the air in the photovoltaic wall circulates naturally with the indoor air, which is suitable for the condition that the air interlayer temperature is higher than 30 ℃. Based on the comparative experimental device, it is found that compared with building B without photovoltaic wall, building A with photovoltaic wall internal circulation mode can save 36% of heating energy consumption, and the simulation shows that the heating efficiency is 14% on Lidong Day. In the active mode, the photovoltaic wall is combined with the fresh air fan. The start and stop of the fresh air fan is controlled by the air interlayer temperature, the start temperature is 30 ℃ and the stop temperature is 28 ℃. It is actually applied to an office building in Shenyang, of which the area of the photovoltaic wall is 8.64 m2. The measured results show that in November, February and March, the average daily working time of fresh air fan is 5 h, the heating efficiency of photovoltaic wall is about 22%, the heating capacity is 17.8 MJ, and the daily average heating capacity per unit area is 2.1 MJ/(m2·d).

参考文献/References:

[1] 中国建筑节能协会. 中国建筑能耗研究报告2020[J]. 建筑节能(中英文),2021,49(2):1-6.
China Association of Building Energy Efficiency. China Building Energy Consumption Annual Report 2020[J]. Journal of BEE,2021,49(2):1-6.
[2]张楠,杨柳,罗智星. 建筑全生命周期碳足迹评价标准发展历程及趋势研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(4): 569-577.
ZHANG Nan, YANG Liu, LUO Zhixing. Carbon emission assessment standards for building life cycle: research status, development and potential trends[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(4): 569-577.
[3]MEHDI Shahrestani, RUNMING Yao, ESSAH Emmanuel, et al. Experimental and numerical studies to assess the energy performance of naturally ventilated PV façade systems[J]. Solar Energy, 2017, 147: 37-51.
[4]NURIA Martín-Chivelet, JUAN Carlos Gutiérrez, MIGUEL Alonso-Abella, et al. Building retrofit with photovoltaics: Construction and performance of a BIPV ventilated façade[J]. Energies, 2018, 11: 17-19.
[5]PENG Jinqing, LU Lin, YANG Hongxing, et al. Comparative study of the thermal and power performances of a semi-transparent photovoltaic façade under different ventilation modes[J]. Applied Energy 2015, 138: 572-583.
[6]PENG Jinqing, LU Lin, YANG Hongxing, et al. Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade[J]. Applied Energy,2013,112: 646-656.
[7]SUZANA Domjan, LENART Petek, CIRIL Arkar, et al. Experimental study on energy efficiency of multi-functional BIPV glazed façade structure during heating season[J]. Energies 2020, 13: 2772.
[8]XU Lijie, JI Jie, LUO Kun, et al. Annual analysis of a multi-functional BIPV/T solar wall system in typical cities of China[J]. Energy, 2020, 197:117098.
[9]季杰,何伟. 光伏墙体年发电性能及年得热动态预测[J]. 太阳能学报,2001,22(3):311-316.
JI Jie, HE Wei. Dynamic prediction of annual power generation performance and annual heat gain of photovoltaic wall[J]. Acta Energiae Solaris Sinica, 2001, 22(3):311-316.
[10]徐小炜,苏亚欣. 内置式PV-Trombe墙自然通风的数值研究[J]. 土木建筑与环境工程,2014,36(5):23-28.
XU Xiaowei, SU Yaxin. Numerical analysis of natural ventilationin built-in photovoltaic- trombe wall[J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(5):23-28.
[11]马杨,季杰,孙炜,等. 2种PV-Trombe墙的光电光热性能对比研究[J]. 太阳能学报,2019,40(8):2323-2328.
MA Yang, JI Jie, SUN Wei, et al. Comparative study on photoelectric and photothernal properties of two PV Trombe wall[J]. Acta Eneryias Solaris Sinica, 2019,40(8):2323-2328.
[12]YANG Siliang, CANNAVALE Alessandro, ALDO Di Carlo, et al. Performance assessment of BIPV/T double-skin façade for various climate zones in Australia: Effects on energy consumption[J]. Solar Energy, 2020, 199: 377-399.
[13]VINEET Saini, ROHIT Tripathi, TIWARI G N, et al. Electrical and thermal energy assessment of series connected N partially covered photovoltaic thermal(PVT)-compound parabolic concentrator(CPC)collector for different solar cell materials[J]. Applied Thermal Engineering, 2018, 128: 1611-1623.
[14]武威,李辰琦,高雪松,等. 铜铟镓硒光伏建筑一体化创新设计研究——广东惠州潼湖科技小镇起步区光伏示范建筑[J]. 建筑学报, 2019(S2): 100-104.
WU Wei, LI Chenqi, GAO Xuesong, et al. Research on innovative design of CIGS-BIPV photovoltaic demonstration building in the starting area of tonghu science and technology town, Huizhou, Guangdong Province[J]. Architectural Journal, 2019(S2): 100-104.
[15]范新宇, 李辰琦, 刘汉青, 等. 彩色CIGS光伏技术在海南三亚珊瑚宫殿商业中心的一体化应用[J]. 建筑学报, 2019(S2): 105-108.
FAN Xinyu, LI Chenqi, LIU Hanqing, et al. Integrated application of color CIGS photovoltaic technology in the commercial center of coral palace in Sanya, Hainan[J]. Architectural Journal, 2019(S2): 105-108.
[16]李辰琦, 曹也, 李志新. 严寒地区铜铟镓硒光伏墙体的热效能研究[J].建筑学报, 2019(S2): 72-75.
LI Chenqi, CAO Ye, LI Zhixin. Thermal efficiency study of CIGS photovoltaic wall in severe cold region[J]. Architectural Journal, 2019(S2): 72-75.
[17]何泉,盛昂昂,刘大龙. 围护结构保温设计中非稳态计算方法适用性研究[J]. 西安建筑科技大学学报(自然科学版),2021,53(4):561-567.
HE Quan, SHENG Angang, LIU Dalong. Study on the applicability of unsteady calculation method inthermal insulation design of enclosure structure in cold area[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(4):561-567.
[18]苏亚欣,徐小炜,邓文义. 电池内置式PV-Trombe 墙的热利用特性数值研究[J]. 太阳能学报, 2016, 10(37): 2639-2646.
SU Yaxin, XU Xiaowei, DENG Yiwen. Numerical study on heat utilization characteristics of PV-Trombe wall with built-in battery[J]. Acta Energiae Solaris Sinica, 2016, 10(37): 2639-2646.

备注/Memo

备注/Memo:
收稿日期:2021-07-11修改稿日期:2021-10-29
基金项目:沈阳市科学技术计划(20-206-4-14); 国家自然科学基金项目(51878417)
第一作者:曹 也(1993-),女,博士生,主要从事光伏光热建筑一体化方面的研究. E-mail:846397486@qq.com 通信作者:李辰琦(1976-),男,博士,教授,主要从事光伏建筑一体化和绿色建筑的研究. E-mail:lcq3000@163.com

更新日期/Last Update: 2021-12-20