[1]郭 瑞,李承高,咸贵军,等.碳-玻纤维混杂复合材料杆体的力学与耐久性能研究[J].西安建筑科技大学学报(自然科学版),2022,54(02):174-183.[doi:10.15986/j.1006-7930.2022.02.003]
 GUO Rui,LI Chenggao,XIAN Guijun,et al.Study on mechanical and durability of carbon-glass fiber hybrid composite rod[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(02):174-183.[doi:10.15986/j.1006-7930.2022.02.003]
点击复制

碳-玻纤维混杂复合材料杆体的力学与耐久性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年02期
页码:
174-183
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Study on mechanical and durability of carbon-glass fiber hybrid composite rod
文章编号:
1006-7930(2022)02-0174-10
作者:
郭 瑞12李承高12咸贵军12汪云家3
(1.哈尔滨工业大学 结构工程灾变与控制教育部重点实验室,黑龙江 哈尔滨 150090; 2.哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150090; 3.中国石油化工集团有限公司 胜利石油管理局科技处,山东 东营 257000)
Author(s):
GUO Rui12 LI Chenggao12 XIAN Guijun12 WANG Yunjia3
(1.Key Lab of Structures Dynamic Behavior and Control, Harbin Institute of Technology, Ministry of Education, Harbin 150090, China; 2.School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China; 3.Shengli Oilfield Company, China Petroleum & Chemical Corporation(SINOPEC), Shandong Dongying 257100, China)
关键词:
碳-玻璃纤维混杂杆 静力性能 湿热耐久性 疲劳性能 混杂效应
Keywords:
carbon-glass fiber hybrid rod mechanical performance hygrothermal durability fatigue performance hybrid effect
分类号:
TU398+.9
DOI:
10.15986/j.1006-7930.2022.02.003
文献标志码:
A
摘要:
碳纤维与玻璃纤维混杂增强树脂基复合材料可以发挥碳纤维的高强、高模、耐疲劳性能与玻璃纤维的高应变、低成本等优势,满足工程结构应用需求.本文针对碳-玻璃纤维混杂增强环氧树脂基复合材料拉挤杆,发明了一套高效挤压-摩擦型锚固系统用于杆体力学测试,研究了纤维混杂模式(随机混杂与包覆混杂)对混杂杆体静力、湿热老化与疲劳性能的影响规律.研究表明:挤压-摩擦型锚固系统受力均匀,锚固效率高,适用于混杂杆体的力学性能测试; 在一定的碳/玻璃纤维混杂比(2:3)条件下,通过将碳纤维束随机分散到玻璃纤维束中制备的杆体可以避免包覆混杂杆体中的GFRP皮-CFRP芯界面薄弱层脱粘破坏,短梁剪切、拉伸与疲劳性能得到显著提升,实现了正混杂效应; 在80 ℃高温浸泡下,随机混杂杆体受到碳-玻璃纤维/树脂界面劣化的影响,其界面强度保留率低于包覆混杂杆体.
Abstract:
Carbon and glass fiber hybrid reinforced polymer composites can play the advantages of high strength, high modulus, fatigue resistance of carbon fiber and high strain and low cost of glass fiber to meet the application requirements of engineering structure. In this paper, an efficient extruded-friction anchorage system was developed for mechanical tests of carbon-glass fiber hybrid reinforced epoxy resin composite pultruded rod, and the effects of fiber hybrid mode(random hybrid and coating hybrid)on mechanical, hygrothermal aging and fatigue properties of the hybrid rod were studied. Results show that the extruded-friction anchorage system had uniform stress distribution and high anchorage efficiency, which was suitable for the mechanical test of hybrid rod. At a certain carbon/glass fiber hybrid ratio(2:3), the rod prepared by randomly dispersing carbon fiber bundle into glass fiber bundle could avoid the debonding failure of the weak layer at the interface between GFRP skin and CFRP core of coating hybrid rod, which could greatly improve the short beam shear, tensile and fatigue properties and realize positive hybrid effect. Owing to the deterioration of the carbon-glass fiber/resin interface at the elevated immersion temperature of 80 ℃, the interface strength retention rate of random hybrid rod was lower than that of coating hybrid rod.

参考文献/References:

[1]韩娟, 刘伟庆, 方海. 纤维增强树脂基复合材料在土木基础设施领域中的应用[J]. 南京工业大学学报:自然科学版, 2020, 42(5): 543-554.
HAN Juan, LUI Weiqing, FANG Hai. Application of fiber-reinforced resin matrix composites in the civil infrastructure fiel[J]. Journal of Nanjing Tech. University(Nature Science Edition), 2020, 42(5): 543-554.
[2]常鑫泉, 汪昕, 刘长源, 等. 预应力FRP板加固RC梁抗弯性能有限元模型可靠性评价[J]. 南京工业大学学报(自然科学版), 2021, 43(3): 318-328.
CHANG Xinquan, WANG Xin, LIU Changyuan, et al. Reliability evaluation of finite element model for flexural behavior of RC beams reinforced with prestressed FRP laminates[J]. Journal of Nanjing Tech. University(Nature Science Edition),2021, 43(3): 318-328.
[3]张强先, 赵华伟, 方园, 等. 悬索桥主缆钢丝腐蚀与防护的应用进展[J]. 南京工业大学学报(自然科学版),2020, 42(3): 278-283.
ZHANG Qiangxian, ZHAO Huawei, FANG Yuan, et al. Application progress on corrosion and protection of main cable steel wire of suspension bridge[J]. Journal of Nanjing Tech. University(Nature Science Edition),2020, 42(3): 278-283.
[4]SWOLFS Y, VERPOEST I, GORBATIKH L. Maximising the hybrid effect in unidirectional hybrid composites[J]. Materials & Design, 2016, 93: 39-45.
[5]SWOLFS Y, GORBATIKH L, VERPOEST I. Fibre hybridisation in polymer composites: A review[J]. Composites Part(a): Applied Science and Manufacturing, 2014, 67: 181-200.
[6]JALALVAND M, CZEL G, WISNOM M R. Parametric study of failure mechanisms and optimal configurations of pseudo-ductile thin-ply UD hybrid composites[J]. Composites Part a-Applied Science and Manufacturing, 2015, 74: 123-131.
[7]CZEL G, JALALVAND M, WISNOM M R, et al. Design and characterisation of high performance, pseudo-ductile all-carbon/epoxy unidirectional hybrid composites[J]. Composites Part B-Engineering, 2017, 111: 348-356.
[8]NANDAGOPAL R A, BOAY C G, NARASIMALU S. An empirical model to predict the strength degradation of the hygrothermal aged CFRP material[J]. Compos Struct, 2020, 236: 11-16.
[9]PRUSTY R K, RATHORE D K, RAY B C. Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature[J]. J Appl Polym Sci, 2017, 135(11): 45987.
[10]RAY B C. Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites[J]. J Colloid Interf Sci, 2006, 298(1): 111-117.
[11]STARKOVA O, ANISKEVICH K, SEVCENKO J. Long-term moisture absorption and durability of FRP pultruded rebars[J]. Materials Today: Proceedings, 2020, 34(1): 36-40.
[12]DEMERS C E. Fatigue strength degradation of E-glass FRP composites and carbon FRP composites[J]. Construction and Building Materials, 1998, 12(5): 311-318.
[13]BARRON V, BUGGY M, MCKENNA N H. Frequency effects on the fatigue behaviour on carbon fibre reinforced polymer laminates[J]. Journal of Materials Science, 2001, 36(7): 1755-1761.
[14]DEMERS C E. Tension-tension axial fatigue of E-glass fiber-reinforced polymeric composites: tensile fatigue modulus[J]. Construction & Building Materials, 1998, 12(1): 51-58.
[15]GAMSTEDT E K, TALREJA R. Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics[J]. Journal of Materials Science, 1999, 34(11): 2535-2546.
[16]DONG H, LI Z, WANG J, et al. A new fatigue failure theory for multidirectional fiber-reinforced composite laminates with arbitrary stacking sequence[J]. Int J Fatigue, 2016, 87: 294-300.
[17]LASRI L, NOUARI M, EI Mansori M. Wear resistance and induced cutting damage of aeronautical FRP components obtained by machining[J]. Wear, 2011, 271(9-10): 2542-2548.
[18]李承高, 郭瑞, 黄翔宇, 等. 碳纤维增强树脂复合材料(CFRP)拉挤板材的楔形-挤压锚固机制[J]. 南京工业大学学报:自然科学版, 2021, 43(3): 358-365.
LI Chenggao, GUO Rui, HUANG Xiangyu, et al. Wedge-extrusion anchorage mechanism of pultruded CFRP plate[J]. Journal of Nanjing Tech University: Nature Science Edition, 2021, 43(3): 358-365.
[19]LI C, XIAN G, LI H. Tension-tension fatigue performance of a large-diameter pultruded carbon/glass hybrid rod-ScienceDirect[J]. Int J Fatigue, 2019, 120: 141-149.
[20]GUO R, XIAN G, LI C, et al. Effect of fiber hybrid mode on the tension-tension fatigue performance for the pultruded carbon/glass fiber reinforced polymer composite rod[J]. Engineering Fracture Mechanics, 2022, 260: 108208.
[21]RUI GUO G X, CHENGGAO LI, XIANGYU HUANG, AND MEIYIN XIN. Effect of fiber hybridization types on the mechanical properties of carbon/glass fiber reinforced polymer composite rod[J]. Mechanics of Advanced Materials and Structures, 2021: 1-13
[22]GUO R, XIAN G, LI C, et al. Water uptake and interfacial shear strength of carbon/glass fiber hybrid composite rods under hygrothermal environments: Effects of hybrid modes[J]. Polymer Degradation and Stability, 2021, 193: 109723.
[23]KARBHARI V M, XIAN G J. Hygrothermal effects on high V-F pultruded unidirectional carbon/epoxy composites: Moisture uptake[J]. Compos Part B-Eng, 2009, 40(1): 41-49.

备注/Memo

备注/Memo:
收稿日期:2021-04-01修改稿日期:2021-04-20
基金项目:国家重点研发计划资助(2021YFB3704402)
第一作者:郭瑞(1994—),男,在读博士,研究方向为土木工程纤维增强树脂复合材料混杂与耐久性.E-mail:guorui080539@163.com 通信作者:咸贵军(1972—),男,博士,教授,研究方向为纤维增强树脂复合材料与结构性能.E-mail:gixian@hit.edu.cn
更新日期/Last Update: 2022-04-28