参考文献/References:
[1]2021年1~10月份水泥行业运行情况[J].中国建材,2021(12):84.
Cement industry operation from January to October 2021[J].China Building Materials, 2021(12):84.
[2]傅博. 碱矿渣混凝土耐高温性能研究[D].重庆:重庆大学,2014.
FU Bo. Study on the high temperature resistance of alkali slag concrete[D]. Chongqing: Chongqing University, 2014.
[3]朱晶. 碱矿渣胶凝材料耐高温性能及其在工程中应用基础研究[D].哈尔滨:哈尔滨工业大学,2014.
ZHU Jing. Basic research on the high temperature resistance of alkali slag cementitious materials and its application in engineering[D]. Harbin:Harbin Institute of Technology, 2014.
[4]MANJUNATH R, MATTUR C, NARASIMHAN K M Umesha. Studies on high performance alkali activated slag concrete mixes subjected to aggressive environments and sustained elevated temperatures[J]. Construction and Building Materials,2019,229:1-19.
[5]Serhat Çelikten, Mustafa Sardemir, brahim Özgür Deneme. Mechanical and microstructural properties of alkali-activated slag and slag: fly ash mortars exposed to high temperature[J]. Construction and Building Materials,2019,217:50-61.
[6]LI Yinglei, ZHAO Xiaoling, Singh Raman R K, et al. Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand[J]. Construction and Building Materials,2018,159:706-724.
[7]HU X Z, WITTMANN F H. Fracture energy and fracture process zone[J]. Materials and Structures,1992,25(6):319-326.
[8]HU Xiaozhi, FOLKER Wittmann. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics,2000,65(2):209-221.
[9]HU Xiaozhi, DUAN Kai. Size effect and quasi-brittle fracture: the role of FPZ[J]. International Journal of Fracture,2009,154(1/2):3-14.
[10]HU Xiaozhi, DUAN Kai. Size effect: Influence of proximity of fracture process zone to specimen boundary[J]. Engineering Fracture Mechanics,2006,74(7):1093-1100.
[11]Standard practice for the preparation of substitute ocean water: ASTM D1141-98[S]. West Conshohocken, PA: ASTM International, 2013.
[12]中华人民共和国住房和城乡建设部.普通混凝土力学性能试验方法标准:GB/T50081[S]. 北京:中国建筑科学研究院,2019.
MHURO. Standard for mechanical properties of ordinary concrete: GB/T50081[S]. Beijing: China Academy of Building Research, 2019..
[13]SONG S, SOHN D, JENNINGS H M, et al. Hydration of alkali-activated ground granulated blast furnace slag[J]. Journal of Materials Science,2000,35(1):249-257.
[14]Fernández-Jiménez A, PUERTAS F. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements[J]. Advances in Cement Research,2003,15(3):129-136.
[15]Pawel Sikora, Krzysztof Cendrowski, Mohamed Abd Elrahman, et al. The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica[J]. Applied Nanoscience,2019,10:2627-2638.
[16]WANG Junjie, LIU Engui LI Liang. Multiscale investigations on hydration mechanisms in seawater OPC paste[J]. Construction and Building Materials,2018,191:891-903.
[17]NASSER K W, MARZOUK H M. Properties of mass concrete containing fly ash at high temperatures[J]. Journal Proceedings,1979,76(4):537-550.
[18]ZUDA L, PAVLíK Z, ROVNANíKOVá P, et al. Properties of alkali activated aluminosilicate material after thermal load[J]. International Journal of Thermophysics,2006,27(4):1250-1263.
[19]DEFALLA R D. Effect of exposure to elevated temperatures on geopolymer concrete properties[J]. International Journal of Civil Engineering and Technology, 2019, 10(10):448-461.
[20]Gkhan Kürklü. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar[J]. Composites Part B: Engineering, 2016, 92:9-18.
[21]SUSAN A Bernal, Erich D Rodríguez, Ruby Mejía de Gutiérrez, et al. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends[J]. Journal of Materials Science,2011,46(16):5477-5486.
[22]SASUI Sasui, KIM Gyuyong, NAM Jeongsoo, et al. Effects of waste glass sand on the thermal behavior and strength of fly ash and GGBS based alkali activated mortar exposed to elevated temperature[J]. Construction and Building Materials,2022,316:1-18.
[23]Zdeněk P Baant, YU Qiang. Universal size effect law and effect of crack depth on quasi-brittle structure strength[J]. Journal of Engineering Mechanics,2009,135(2):78-84.
[24]YANG Shutong, LI Linzhen, SUN Zhongke, et al. A closed-form fracture model to predict tensile strength and fracture toughness of alkali-activated slag and fly ash blended concrete made by sea sand and recycled coarse aggregate[J]. Construction and Building Materials,2021,300:1-16.
[25]YANG S, ZHANG X, YU M, et al. An analytical approach to predict fracture parameters of coral aggregate concrete immersed in seawater[J]. Ocean Engineering, 2019, 191:1-14.
[26]高丽敏. 碱激发粉煤灰胶凝材料性能研究[D].哈尔滨:哈尔滨工业大学,2007.
GAO Limin. Study on the mechanical properties of alkali-activated fly ash cementitious materials[D].Harbin: Harbin Institute of Technology, 2007.