[1]陈庆胜,庞亚红,孔 龙,等.高强锥形中空夹层薄壁钢管混凝土轴压短柱试验研究[J].西安建筑科技大学学报(自然科学版),2022,54(02):306-316.[doi:10.15986/j.1006-7930.2022.02.019]
 CHEN Qingsheng,PANG Yahong,KONG Long,et al.Experimental study on high strength tapered thin walled concrete-filled double skin steel tubular stub columns under axial compression[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(02):306-316.[doi:10.15986/j.1006-7930.2022.02.019]
点击复制

高强锥形中空夹层薄壁钢管混凝土轴压短柱试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年02期
页码:
306-316
栏目:
出版日期:
2022-04-28

文章信息/Info

Title:
Experimental study on high strength tapered thin walled concrete-filled double skin steel tubular stub columns under axial compression
文章编号:
1006-7930(2022)02-0306-11
作者:
陈庆胜1庞亚红2孔 龙1李博凡2安 宁3王先铁2
(1.国网甘肃省经济技术研究院,甘肃 兰州 730000; 2.西安建筑科技大学 土木工程学院,陕西 西安 710055; 3.国网甘肃省电力公司,甘肃 兰州 730000)
Author(s):
CHEN Qingsheng1 PANG Yahong2 KONG Long1 LI Bofan2 AN Ning3 WANG Xiantie2
(1.State Grid Gansu Economic Research Institute, Lanzhou, China; 2.School of Civil Engineering,Xi’an Univ. of Arch. & Tech.,Xi’an 710055,China; 3.State Grid Gansu Electric Power Co., Lanzhou 730000, China)
关键词:
锥形 中空夹层薄壁钢管混凝土 轴压短柱 试验研究 名义约束效应系数 承载力计算公式
Keywords:
tapered thin walled concrete-filled double skin steel tube stub columns under axial compression experimental research nominal confinement factor calculation formula of bearing capacity
分类号:
TU398+.9
DOI:
10.15986/j.1006-7930.2022.02.019
文献标志码:
A
摘要:
对5组共10个采用Q690钢材和C120混凝土的高强锥形中空夹层薄壁钢管混凝土(THSTW-CFDS)轴压短柱进行试验研究,试验参数为内、外钢管径厚比、空心率以及是否配置纵向加劲肋.结果表明:随着空心率和内、外钢管径厚比增加,试件极限承载力降低; 带肋试件和无肋试件相比,空心率为0.72时,极限承载力提高约7.2%; 空心率为0.82时,极限承载力提高约7.5%; 空心率为0.85时,极限承载力提高约10.9%.利用有限元软件ABAQUS对THSTW-CFDST轴压短柱进行数值模拟,并对其进行轴心受压全过程分析.THSTW-CFDS轴压短柱的受力全过程包括弹性阶段、弹塑性阶段和塑性下降阶段.提出了适用于带纵向加劲肋THSTW-CDFS轴压短柱的承载力计算公式,公式计算结果与试验结果吻合较好.
Abstract:
A total of 10 high strength tapered thin walled concrete-filled double skin steel tubular(THSTW-CFDST)stub columns under axial compression with Q690 steel and C120 concrete were tested in five groups, and the test parameters were the diameter-to-thickness ratio of internal and external steel pipes, the hollow ratio and longitudinal stiffeners. The results showed that with the increase of the hollow ratio and the diameter-to-thickness ratio of the inner and outer steel pipes, the ultimate load bearing capacity of the specimen decreased. Compared with the ribbed specimens, when the hollow ratio was 0.72, the ultimate load bearing capacity of the specimens without ribs increased by about 7.2%, when the hollow ratio was 0.82, the ultimate load bearing capacity increased by about 7.5%, and when the hollow ratio was 0.85, the ultimate load bearing capacity increased by about 10.9%. The finite element software ABAQUS was used to numerically simulate THSTW-CFDST stub columns under axial compression, and the whole process of axial compression was analyzed. The results showed that the whole process of this component under axial compression included the elastic stage, the elasto-plastic stage and the plastic descending stage. Finally, the formula for calculating the axial bearing capacity of the longitudinal stiffeners reinforced THSTW-CFDST stub columns member was proposed, and the calculation results of the formula were in good agreement with the test results.

参考文献/References:

[1]HUANG H, HAN L H, ZHONG T, et al. Analytical behavior of concrete-filled double skin steel tubular(CFDST)stub columns[J]. Journal of Construtional Steel Research, 2010, 66(4): 542-555.
[2]JING Y, CHEN Y, HAN L H. Research on bearing capacity of short concrete filled double skin steel tubes columns under axial compression[J]. Advanced Materials Research, 2011, 1068(338): 2154-2157.
[3]Hassanein M F, Kharoob.O F. Compressive strength of circular concrete-filled double skin tubular short columns[J]. Thin-Walled Structures, 2014, 77(4): 165-173.
[4]夏松, 卢得仁, 丁发兴. 带拉筋方中空夹层钢管混凝土轴压短柱受力性能研究[J]. 建筑结构学报, 2017, 38(S1): 204-209.
XIA Song, LU Deren, DING Faxing, et al. Experiment study of stirrup-confined concrete-filled square double-skin steel tubular stub columns under axial loading[J]. Journal of Building Structures, 2017, 38(S1): 204-209.
[5]DING F X, LU D R, BAI Y, et al. Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading[J]. Thin-Walled Structures, 2016, 98(1): 443-453.
[6]HAN L H, REN Q X, LI W. Tests on inclined, tapered and STS concrete-filled steel tubular(CFST)stub columns[J]. Journal of Constructional Steel Research, 2010, 66: 1186-1195.
[7]LI W, REN Q X, HAN L H, et al. Behavior of tapered concrete-filled double skin steel tubular(CFDST)columns[J]. Thin-walled Structures, 2012, 57(1): 37-48.
[8]王文达, 张超峰, 王景玄, 等. 圆锥形中空夹层钢管混凝土轴压短柱受力机理分析[J]. 建筑科学与工程学报, 2019, 36(3): 37-45.
WANG Wenda, ZHANG Chaofeng, WANG Jingxuan, et al. Analysis on mechanical behavior of tapered concrete-filled double steel tubular short columns under axial compression [J]. Journal of Architecture and Civil Engineering, 2019, 36(3): 37-45.
[9]王灿灿, 梁旭东, 朱培红, 等. 圆形高强中空夹层钢管混凝土构件轴压性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 366-378.
WANG Cancan, LIANG Xudong, ZHU Peihong, et al. Study on the axial compression behavior of circular high strength concrete-filled double skin steel tubular members[J]. Xi’an Univ of Arch. &Tech.(Natural Science Edition), 2021,50(4): 549-555.
[10]中国电力企业联合会. 输电线路中空夹层钢管混凝土杆塔技术规范:T/CEC 185-2018[S]. 北京: 国家电网公司,2018.
China Eletricity Council. Technical code for concrete-filled double skin steel tubular poles and towers of transmission lines:T/CEC 185-2018 [S]. Beijing: China Electric Power Press, 2018
[11]史艳莉,张超峰,鲜威,等. 圆锥形中空夹层钢管混凝土偏压构件受力性能研究[J]. 建筑结构学报, 2021, 42(5): 155-164.
SHI Yanli, ZHANG Chaofeng, XIAN Wei, et al. Research on mechanical behavior of tapered concrete-filled double skin steel tubular members under eccentric compression[J]. Journal of Building Structures, 2021, 42(5): 155-164.
[12]王志滨,郭俊涛,高扬虹,等. 中空夹层薄壁钢管混凝土短柱轴压性能研究[J]. 建筑钢结构进展, 2018, 20(2): 53-59.
WANG Zhibin, GUO Juntao, GAO Yanghong, et al. Study on the behavior of concrete-filled double-skin thin-walled steel tubular stub columns under axial compression[J]. Progress in Steel Building Structures, 2018, 20(2): 53-59.
[13]中国国家标准化管理委员会. 钢及钢产品力学性能试验取样位置及试样制备:GB/T 2975-2018.[S]. 北京: 中国标准出版社, 2018.
Standardization Administration of China. Steel and steel products-Location and preparation of test pieces for mechanical testing:GB/T 2975-2018 [S]. Beijing: Standards Press of China, 2018.
[14]中国建筑科学研究院. 混凝土物理力学性能试验方法标准:GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.
China Academy of Building Research. Standard for test methods of concrete physical and mechanical properties: GB/T 50081-2019 [S]. Beijing: China Architecture & Building Press, 2019.
[15]王志滨,高扬虹,池思源,等. 中空夹层薄壁钢管混凝土柱偏心受压性能研究[J]. 建筑结构学报, 2018, 39(5): 124-131.
WANG Zhibin, GAO Yanghong, CHI Siyuan, et al. Behavior of concrete-filled double-skin thin-walled steel tubular columns under eccentric compression[J]. Journal of Building Structures, 2018, 39(5): 124-131.
[16]HAN L H, ZHONG T, HUANG H, et al. Concrete-filled double-skin(SHS outer and CHS inner)steel tubular beam-columns[J]. Thin-walled Structures, 2004, 42(9): 1329-55.
[17]HASSANEIN M F, KHAROOB O F,GARDNER L. Behaviour and design of square concrete-filled double skin tubular columns with inner circular tubes[J]. Engineering Structures, 2015, 100(6): 410-42.

备注/Memo

备注/Memo:
收稿日期:2021-09-23修改稿日期:2021-04-22
基金项目:国家自然科学基金资助项目(51678474)
第一作者:陈庆胜(1971—),男,学士,高级工程师,主要从事输电线路设计与研究.E-mail:544149121@qq.com 通信作者:王先铁(1979—),男,博士,教授,主要从事钢结构与钢管混凝土结构研究.E-mail:wangxiantie@163.com
更新日期/Last Update: 2022-04-28