[1]付大喜,李世鑫,翁效林.复杂工况下高地应力软岩隧道变形特征与影响机制[J].西安建筑科技大学学报(自然科学版),2022,54(03):345-354.[doi:10.15986/j.1006-7930.2022.03.005]
 FU Daxi,LI Shixin,WENG Xiaolin.Deformation characteristics and influence mechanism of soft rock tunnel with high in-situ stress under complex working conditions[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(03):345-354.[doi:10.15986/j.1006-7930.2022.03.005]
点击复制

复杂工况下高地应力软岩隧道变形特征与影响机制()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年03期
页码:
345-354
栏目:
出版日期:
2022-06-28

文章信息/Info

Title:
Deformation characteristics and influence mechanism of soft rock tunnel with high in-situ stress under complex working conditions
文章编号:
1006-7930(2022)03-0345-10
作者:
付大喜1李世鑫2翁效林2
(1.河南省交通规划设计研究院股份有限公司,河南 郑州 450000; 2.长安大学 公路学院,陕西 西安 710064)
Author(s):
FU Daxi1 LI Shixin2 WENG Xiaolin2
(1.Henan Provincial Communications Planning & Design Institute Co., Ltd., Zhengzhou 450000, China; 2.School of Highway, Chang'an University, Xi'an 710061, China)
关键词:
高地应力 数值模拟 软岩 应力释放 变形规律 Hoek-Brown强度准则
Keywords:
high geostress numerical simulation softrock stress relief deformation law Hoek-Brown strength criterion
分类号:
TU455.4
DOI:
10.15986/j.1006-7930.2022.03.005
文献标志码:
A
摘要:
为探明高地应力软岩隧道在不同开挖工法下洞周塑性变形和应力重分布的响应特征以及地质强度参数对开挖变形的影响机制,寻求不同围岩等级下合理的开挖工法体系以及最佳支护时机,利用数值分析手段,对四种工法下的围岩应力、塑性区分布及变形失稳展开分析研究.结果表明:(1)对于软弱围岩,采用CRD法和三台阶临时仰拱法能够有效控制围岩变形、应力和塑性区的发展,尤其是对拱脚位移的控制效果突出明显,三台阶法和环形预留核心土法开挖后将在拱脚处产生较大的收敛变形;(2)采用临时支撑将在支撑及拱脚位置产生明显的应力集中,实际过程中应加强对此位置的保护,设置锁脚锚杆或补强注浆提高其强度承载力;(3)开挖后过早支护没有充分发挥围岩自承能力,支护不及时围岩内出现松动压力使围岩进入流变状态,软弱Ⅴ级围岩合理支护时间段应在开挖后荷载释放10%~30%内;(4)拱腰水平收敛整体随侧压力系数的增加而增大,但当K为0.5时,拱腰水平位移有从向内收敛迅速向外扩张的趋势; 拱顶以上围岩竖向沉降随侧压力系数的增大而减小.数值模拟结果为类似高地应力软岩隧道设计施工和变形控制提供参考和依据.
Abstract:
In order to explore the response characteristics of plastic deformation and stress redistribution around the tunnel under different excavation methods and the influence mechanism of geological strength parameters on excavation deformation, a reasonable excavation method system under different surrounding rock grades was sought. The best support time is to use numerical analysis methods to analyze and study the surrounding rock stress, plastic zone distribution and deformation instability under the four construction methods. The results show that:(1)For weak surrounding rock, the CRD method and the three-step temporary invert method can effectively control the deformation, stress and the development of the plastic zone of the surrounding rock, especially the control effect of the arch toe displacement is obvious. The three-step method After excavation with the ring-shaped reserved core soil method, larger convergence deformation will occur at the arch toe.(2)The use of temporary support will cause obvious stress concentration at the support and arch foot position. In the actual process, the protection of this position should be strengthened, and the lock foot anchor rod or reinforcement grouting should be set to improve its strength bearing capacity.(3)Premature support after excavation did not give full play to the self-supporting capacity of the surrounding rock, and the loose pressure in the surrounding rock caused the surrounding rock to enter the rheological state if the support was not timely. The reasonable supporting period of soft V grade surrounding rock should be within 10%~30% of load release after excavation.(4)The horizontal convergence of the arch waist generally increases with the increase of the lateral pressure coefficient, but when k is 0.5, the horizontal displacement of the arch waist tends to converge inward and rapidly expand outward; The vertical settlement of the surrounding rock above the vault decreases with the increase of the lateral pressure coefficient. The numerical simulation results provide reference and basis for the design and construction of similar high in-situ stress soft rock tunnel and deformation control.

参考文献/References:

[1]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007(6):1081-1106.
SUN Jun. Research progress of rock rheological mechanics and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(6): 1081-1106.
[2]魏来,刘钦,黄沛.高地应力软岩隧道大变形机理及控制对策研究综述[J].公路,2017,62(7):297-306.
WEI Lai, LIU Qin, HUANG Pei. A review on large deformation mechanism and control measures of soft rock tunnel with high in-situ stress[J]. Highway, 2017, 62(7): 297-306.
[3]EVERT Hoek. Big tunnels in bad rock[J]. Journal of Geotechnical and Geo-environmental Engineering, 2001, 127(9):726-740.
[4]陈卫忠,田云,王学海,等.基于修正[BQ]值的软岩隧道挤压变形预测[J].岩土力学,2019,40(8):3125-3134.
CHEN Weizhong, TIAN Yun, WANG Xuehai, et al. Prediction of compressive deformation of soft rock tunnel based on modified[BQ] value[J]. Rock and Soil Mechanics, 2019, 40(8): 3125-3134.
[5]来弘鹏,林永贵,谢永利,等.不同应力场下软弱围岩公路隧道的力学特征试验[J].中国公路学报,2008(4):81-87.
LAI Hongpeng, LIN Yonggui, XIE Yongli, et al. Experimental study on mechanical characteristics of highway tunnel in soft surrounding rock under different stress fields[J]. China Journal of Highway and Transport, 2008(4): 81-87.
[6]ZENG Xiantao,JIANG Yaodong,JIANG Cong,et al.Rock roadway complementary support technology in Fengfeng mining district[J]. International Journal of Mining Science and Technology,2014,24(6):791-798.
[7]关宝树.软弱围岩隧道变形及其控制技术[J].隧道建设, 2011,31(1):1-17.
GUAN Baoshu. Deformation and control technology of tunnel in soft surrounding rock[J]. Tunnel Construction, 2011, 31(1): 1-17.
[8]李冠鹏.断层破碎带处隧道开挖方法和超前小导管注浆对变形控制效果研究[D].兰州:兰州交通大学,2019.
LI Guanpeng. Study on tunnel excavation method in fault broken zone and control effect of advance small pipe grouting on deformation[D]. Lanzhou: Lanzhou Jiaotong University, 2019.
[9]刘宇鹏,夏才初,吴福宝,等.高地应力软岩隧道长、短锚杆联合支护技术研究[J].岩石力学与工程学报,2020,39(1):105-114.
LIU Yupeng, XIA Caichu, WU Fubao, et al. Research on combined support technology of long bolt and short bolt in soft rock tunnel with high in-situ stress[J].Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 105-114.
[10]王志杰,许瑞宁,袁晔,等.高地应力条件下隧道施工方法研究[J].铁道建筑,2015(9):50-52.
WANG Zhijie, XU Ruining, YUAN Ye, et al. Study on Construction Method of Tunnel under High Ground Stress Condition[J]. Railway Construction, 2015(9): 50-52.
[11]HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown criterion-2002[C]//Proc NARMS-TAC Conference. Toronto: University of Toronto, 2002:267-273.
[12]彭俊,荣冠,王小江,等.完整岩石Hoek-Brown屈服准则参数mi的经验模型[J].中南大学学报(自然科学版),2013(11):4617-4623.
PENG Jun, RONG Guan, WANG Xiaojiang, et al. An empirical model of Hoek-Brown yield criterion parameter mi for intact rock[J]. Journal of Central South University(Science and Technology), 2013(11): 4617-4623.
[13]王新刚,胡斌,王家鼎,等.基于GSI的Hoek-Brown强度准则定量化研究[J].岩石力学与工程学报,2015,34(S2):3805-3812.
WANG Xingang, HU Bin, WANG Jiading, et al. Quantitative study on Hoek-Brown strength criterion based on GSI[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3805-3812.
[14]盛佳,李向东.基于Hoek-Brown强度准则的岩体力学参数确定方法[J].采矿技术,2009,9(2):12-14,41.
SHENG Jia, LI Xiangdong. Determination of rock mechanics parameters based on Hoek-Brown strength criterion[J]. Mining Technology, 2009,9(2): 12-14,41.
[15]王成虎,何满潮.Hoek-Brown岩体强度估算新方法及其工程应用[J].西安科技大学学报,2006(4):456-459,464.
WANG Chenghu, HE Manchao. A new method for strength estimation of Hoek-Brown rock mass and its application in engineering[J]. Journal of Xi'an University of Science and Technology, 2006(4): 456-459,464.
[16]胡盛明,胡修文.基于量化的GSI系统和Hoek-Brown准则的岩体力学参数的估计[J].岩土力学,2011,32(3):861-866.
HU Shengming, HU Xiuwen. Estimation of rock mechanics parameters based on quantitative GSI system and Hoek-Brown criterion[J]. Rock and Soil Mechanics, 2011,32(3): 861-866.
[17]陈志敏.高地应力软岩隧道围岩压力研究和围岩与支护结构相互作用机理分析[D].兰州:兰州交通大学,2012.
CHEN Zhimin. Study on surrounding rock pressure and interaction mechanism between surrounding rock and supporting structure in soft rock tunnel with high geostress[D]. Lanzhou: Lanzhou Jiaotong University, 2012.
[18]HENG Zhang, LIANG Chen, YIMO Zhu, et al. Stress field distribution and deformation law of large deformation tunnel excavation in soft rock mass[J]. Applied Sciences, 2019, 9(5).
[19]黄彦波.基于新意法的高地应力软岩隧道施工技术研究[D].西安:西安科技大学,2019.
HUANG Yanbo. Research on construction technology of soft rock tunnel with high geostress based on new method[D]. Xi'an: Xi'an University of Science and Technology, 2019
[20]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000(1):46-62.
HE Manchao, JING Haihe, SUN Xiaoming. Research progress in engineering geomechanics of soft rock[J].Journal of Engineering Geology, 2000(1): 46-62.
[21]NG C W,LEE K M,TANG D K. Three-dimensional numerical investigations of new Austrian tunnelling method(NATM)twin tunnel interactions[J]. Canadian Geotechnical Journal,2004,41(3):523-539.
[22]林贤文.既有双洞隧道原位扩建力学性能研究[D].福州:福建工程学院,2021.
LIN Xianwen. Study on mechanical properties of existing double-tunnel in-situ extension[D]. Fuzhou: Fujian Institute of Technology, 2021.

相似文献/References:

[1]叶朝良,何本国,高 如.构造应力场中的大断面隧道结构地震反应研究[J].西安建筑科技大学学报(自然科学版),2013,45(04):508.[doi:10.15986/j.1006-7930.2013.04.008]
 YE Chao-liang,HE Ben-guo,GAO Ru.Study on the seismic response of the large-span tunnel in tectonic geo-stress[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(03):508.[doi:10.15986/j.1006-7930.2013.04.008]
[2]张繁荣,徐强,蒋攀,等.采用新型双T型钢 - 穿芯螺栓连接的方钢管混凝土柱 - 钢梁节点滞回性能研究[J].西安建筑科技大学学报(自然科学版),2020,52(01):54.[doi:10.15986j.1006-7930.2020.01.008]
 ZHANG Fanrong,XU Qiang,JIANG Pan,et al.Study on hysteretic behavior of new steel beam to concrete-filled square steel tubular column joint with double T-stub-bidirectional bolts[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):54.[doi:10.15986j.1006-7930.2020.01.008]
[3]李 浩,刘 毅,彭 振,等.边坡偏压对于邻近地铁车站基坑稳定性影响分析[J].西安建筑科技大学学报(自然科学版),2020,52(03):359.[doi:10.15986/j.1006-7930.2020.03.008]
 LI Hao,LIU Yi,PENG Zhen,et al.Analysis on the stability of metro foundation pit under bias pressure from the adjacent slope[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):359.[doi:10.15986/j.1006-7930.2020.03.008]
[4]卫守峰.黄土地区地铁竖井转横通暗挖施工稳定性分析[J].西安建筑科技大学学报(自然科学版),2020,52(03):366.[doi:10.15986/j.1006-7930.2020.03.009]
 WEI Shoufeng.Optimization analysis of tunnel construction methods through cross aisle from subway shaft based on numerical test analysis in loess stratum[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):366.[doi:10.15986/j.1006-7930.2020.03.009]
[5]牛泽林,刘朝鹏,郑 蕾,等.大断面公路板岩隧道开挖与支护数值模拟研究[J].西安建筑科技大学学报(自然科学版),2020,52(03):376.[doi:10.15986/j.1006-7930.2020.03.010]
 NIU ZeLin,LIU Chaopeng,ZHENG Lei,et al.Numerical simulation study on excavation and support of slab tunnel in large section highway[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):376.[doi:10.15986/j.1006-7930.2020.03.010]
[6]王 璐,史庆轩,戎 翀.基于多尺度模型的斜交相贯节点基本力学性能分析[J].西安建筑科技大学学报(自然科学版),2020,52(03):409.[doi:10.15986/j.1006-7930.2020.03.015]
 WANG Lu,SHI Qingxuan,RONG Chong.Analysis of basic mechanical properties of intersecting connection based on multi-scale model[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):409.[doi:10.15986/j.1006-7930.2020.03.015]
[7]谢伟东.降雨入渗对隧道下穿路基段边坡变形稳定性的影响分析[J].西安建筑科技大学学报(自然科学版),2020,52(04):470.[doi:10.15986-j.1006-7930.2020.04.002]
 XIE Weidong.Impact analysis of rainfall infiltration on the deformation mechanism and stability of roadbed slope[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):470.[doi:10.15986-j.1006-7930.2020.04.002]
[8]郭 琦,吴 梦,孙虎平,等.考虑初始随机缺陷的橡胶混凝土破坏形态研究[J].西安建筑科技大学学报(自然科学版),2020,52(06):806.[doi:10.15986/j.1006-7930.2020.06.005 ]
 GUO Qi,WU Meng,SUN Huping,et al.Study of rupture form for rubber concrete considering initial random defect[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(03):806.[doi:10.15986/j.1006-7930.2020.06.005 ]
[9]常志英,黄廷林.基于VOF数值模拟的扬水曝气器提水性能研究[J].西安建筑科技大学学报(自然科学版),2021,53(01):117.[doi:10.15986/j.1006-7930.2021.01.016]
 CHANG Zhiying,HUANG Tinglin.Research on the water lifting performance of waterlifting aerator based on VOF[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(03):117.[doi:10.15986/j.1006-7930.2021.01.016]
[10]刘彦涛.下穿寺庙隧道爆破振动影响的数值模拟与分析[J].西安建筑科技大学学报(自然科学版),2021,53(02):160.[doi:10.15986/j.1006-7930.2021.02.002]
 LIU Yantao.Numerical simulation and analysis of the influence of blasting vibration in the tunnel crossing under a temple[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2021,53(03):160.[doi:10.15986/j.1006-7930.2021.02.002]

备注/Memo

备注/Memo:
收稿日期:2021-06-21修改稿日期:2022-06-16
基金项目:国家自然科学基金项目(U1934213)
第一作者:付大喜(1979—),男,硕士,教授级高级工程师,主要从事地下工程和隧道设计方面的研究.E-mail:25945800@qq.com
更新日期/Last Update: 2022-06-28