[1]付宗驰,罗 畅,刘玉豪,等.基于光线落点分析的中国古建筑屋檐研究[J].西安建筑科技大学学报(自然科学版),2022,54(03):386-393.[doi:10.15986/j.1006-7930.2022.03.009]
 FU Zongchi,LUO Chang,LIU Yuhao,et al.Research on Chinese ancient building eaves form the falling points of sunlight[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(03):386-393.[doi:10.15986/j.1006-7930.2022.03.009]
点击复制

基于光线落点分析的中国古建筑屋檐研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年03期
页码:
386-393
栏目:
出版日期:
2022-06-28

文章信息/Info

Title:
Research on Chinese ancient building eaves form the falling points of sunlight
文章编号:
1006-7930(2022)03-0386-08
作者:
付宗驰1罗 畅1刘玉豪1裘鸿菲2
(1.石河子大学 农学院,新疆 石河子 832003; 2.华中农业大学 园艺林学学院,湖北 武汉 430070)
Author(s):
FU Zongchi1 LUO Chang1 LIU Yuhao1QIU Hongfei2
(1.Agricultural College of Shihezi University, Shihezi University,Xinjing Shihezi 832003, China; 2.College of Horticulture and Foresty Science Huzhong Agricultural University, Wuhan 430070, China)
关键词:
光线分析 中国古建筑 气候适应性 屋檐
Keywords:
sunlight analysis ancient Chinese building climate response eave
分类号:
TU-02
DOI:
10.15986/j.1006-7930.2022.03.009
文献标志码:
A
摘要:
以夏至、冬至、处暑、大寒真太阳时12时光线为关键节点时间光线,经唐代至清代26个古建筑剖面图屋檐下沿绘制关键节点时间光线,通过分析光线落点与檐柱的关系发现:至晚到唐代中国古建筑就已经发展出了与光照相适应的气候适应性设计方法,主要表现为建筑所在地处暑光线刚好落在建筑檐柱柱脚附近很小的范围内,冬至日光线刚好落在檐柱顶部; 这种对光线的组织能够避免热季光线照射到建筑南立面,而使冬至太阳光线可以照射到整个南立面柱身区域,兼顾了冷热两季建筑对太阳辐射的需求,表现出了良好的对于光照的适应性,且这种适应性策略和设计方法被宋至明各代继承; 与历史上政治中心南北移动相关的光线适应性再设计,应当是中国古建筑屋檐尺寸变化的原因.
Abstract:
In this paper, the noon sunlight at Summer Solstice, End of Heat, Winter Solstice and Greater Cold, were the four key sunlight. Draw the key sunlight at eaves on 24 ancient building sections form Tang to Qing dynasties, by analyzing the law of sunlight falling points, it was found that: 1)no later than Tang Dynasty, the ancient buildings had developed a climate response design method—the local sunlight at the End of Heat just falls in a small area near the the eave pillar foot, the sunlight at Winter Solstice just falls on the top of the eave pillar, in this way, the entire south facade can be completely shaded in the hot season, and the sunlight from the weakest day(Winter Solstice)of solar radiation can irradiate the entire south façade pillar in the cold season, the building's demand for solar radiation during the hot and cold seasons had been taken into account; 2)the climate response strategy and design method were inherited by Song and Ming Dynasties; 3)the sunlight adaptability redesign as the political center latitude changes in history, should be the reason for the changes of the ancient Chinese building eaves dimension.

参考文献/References:

[1]梁思成. 梁思成全集(第四卷)[M]. 北京: 中国建筑工业出版社, 2001.
LIANG Sicheng. Complete works of sicheng liang,IV[M]. Beijing: Building Press, 2001.
[2]郝石盟,宋晔皓.不同建筑体系下的建筑气候适应性概念辨析[J].建筑学报,2016(9):102-107.
HAO Shimeng, SONG Yehao. An analysis of the concepts of climate response under various architectural systems[J]. Architectural Journal, 2016(9):102-107.
[3]吴国源,周庆华.中国建筑传统的思想特征及其解释方法问题初探[J].西安建筑科技大学学报(社会科学版),2017,36(3):56-63.
WU Guoyuan, ZHOU Qinghua. A brief discussion about the ideological characteristics and the interpretation method of chinese architectural tradition[J]. Journal of Xi'an Univ. of Arch. & Tech.(Social Science Edition), 2017,36(3):56-63.
[4]陈明达. 独乐寺观音阁、山门的大木作制度(下)[J].建筑史论文集, 2002, 16(2): 10-30,290.
CHEN Mingda. Executive summary of the system of the main wooden structure embedded in the buddhisattva pavilion and the main entrance of the dule temple[J]. Anthology of Architectural History, 2002, 16(2): 10-30,290.
[5]王春波.山西平顺晚唐建筑天台庵[J].文物, 1993(6): 34-43,101.
WANG Cunbo. Tiantai temple of late Tang architecture in Pingshun, Shanxi[J]. Cultural Relics, 1993(6): 34-43,101.
[6]清华大学建筑设计研究院.佛光寺东大殿建筑勘察研究报告[M].北京:文物出版社,2011.
The Architectural Design & Research Institute of Tsinghua University. Research report on architectural survey of east Hall of Foguang Temple[M]. Beijing:Cultural Relic Press, 2001.
[7]王贵祥.关于唐宋单檐木构建筑平立面比例问题的一些初步探讨[J]. 建筑史论文集, 2002, 15(1): 50-64,258-9.
WANG Guixiang, Some primary discussion on rules of proportion in plans and elevations of single-eave buildings of tang-song periods[J]. Anthology of architectural history, 2002, 15(1): 50-64,258-9.
[8]肖旻.佛光寺东大殿尺度规律探讨[J].建筑学报, 2017(6):37-42.
XIAO Min. Measurement regulations of the main hall of foguangsi[J]. Architectural Journal, 2017(6):37-42.
[9]张十庆.《营造法式》的技术源流及其与江南建筑的关联探析[J].美术大观,2015(4):106-109.
ZHANG Shiqing. On the technical origin of “building French style” and its relationship with Jiangnan architecture[J]. Art Panorama, 2015(4):106-109.
[10]曹汛.草架源流[J].中国建筑史论汇刊, 2013(1): 3-35.
CAO Xun. Evolution of Caojia[J]. Journal of Chinese Architecture History, 2013(1): 3-35.
[11]肖旻.试论古建筑木构架类型在历史演进中的关系[J].华夏考古, 2005(1): 69-74.
XIAO Min. On the relation of the types of timber structural frames in ancient buildings in the evolution of history[J]. Huaxia Archaeology, 2005(1): 69-74.
[12]薛建阳,董金爽,夏海伦,等.不同松动程度下古建筑木结构透榫节点弯矩-转角关系分析[J].西安建筑科技大学学报(自然科学版),2018,50(5):638-644.
XUE Jianyang, DONG Jinshuang, XIA Hailun, et al. Moment-rotation relationship of through-tenon joints under different degree of looseness in ancient wooden buildings[J]. Journal of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2018,50(5):638-644.
[13]赵鸿铁,张海彦,薛建阳,等.古建筑木结构燕尾榫节点刚度分析[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(4): 450-454.
ZHAO Hongtie, ZHANG Haiyan, et al. The stiffiness analysis on the characteristic of mortise-tenon joint in historical timber buildings[J]. Journal of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2009, 41(4): 450-454.
[14]胡卫兵,杨佳,吴严辉,等.交通荷载作用下古建筑木结构柱顶水平速度计算研究[J].西安建筑科技大学学报(自然科学版),2019,51(3):315-320.
HU Weibing, YANG Jia, WU Yanhui, et al. The calculation of ancient wooden pillars horizontal velocity under the traffic load[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2019,51(3):315-320.
[15]刘敦桢.中国古代建筑史[M].第二版.北京:中国建筑工业出版社, 1984.
LIU Dunzhen. History of ancient Chinese architecture[M]. 2nd ed. Beijing: China Architecture & Building Press, 1984.
[16]中国科学院自然科学史研究所.中国古代建筑技术史[M].北京:中国建筑工业出版社, 2016.
The Institute for the History of Natureal Sciences, Chinese Academy of Sciences. History of ancient Chinese architectural technology[M]. Beijing: China Architecture & Building Press, 2016.
[17]潘谷西.中国建筑史[M].第五版.北京:中国建筑工业出版社, 2003.
PAN Guxi. History of Chinese architecture[M]. 5th ed. Beijing: China Architecture & Building Press, 2003.
[18]ATOLAGBE A M O, FADAMIRO J A. Indigenous African building techniques and the prospects for sustainable housing and environmental development[J]. Environment, Development and Sustainability, 2014, 16(5): 1041-1051.
[19]TAHBAZ M. Primary stage of solar energy use in architecture-Shadow control[J]. Journal of Central South University, 2012, 19(3): 755-63.
[20]PHILOKYPROU M, MICHAEL A, MALAKTOU E, et al. Environmentally responsive design in Eastern Mediterranean: The case of vernacular architecture in the coastal, lowland and mountainous regions of Cyprus[J]. Building and Environment, 2017, 111: 91-109.
[21]KIM E Y. An analysis on the passive environmental control methods of Korean traditional architecture[J]. Journal of the Korean Institute of Culture Architecture, 2017, 57:237-245.
[22]GOU S Q, LI Z G, ZHAO Q, et al. Climate responsive strategies of traditional dwellings located in an ancient village in hot summer and cold winter region of China[J]. Building and Environment, 2015, 86: 151-165.
[23]祝立萍,陈夏琳,黄志甲,等.徽州传统民居24节气的热环境实测分析[J].建筑科学,2020,36(2):67-78.
ZHU Liping, CHEN Xialin, HUANG Zhijia, et al. Thermal environment of 24 solar terms in huizhou traditional residences[J]. Building Science, 2020,36(2):67-78.
[24]XIE M J, ZHANG G Q, ZHOU J, et al. A field study of the shading design and its effect in a Chinese traditional folk house[M]. Hunan: Hunan Univ, 2009.
[25]BOJIC' M, CVETKOVIC' D, BOJIC' L. Optimization of geometry of horizontal roof overhangs during a summer season[J]. Energy Efficiency, 2016, 10(1): 41-54.
[26]KORJENIC A, KLARIC' S. The revival of the traditional Bosnian wood dwellings[J]. Energy Efficiency, 2011, 4(4): 547-558.
[27]HOOFF T V, BLOCKEN B, TIMMERMANS H J P, et al. Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building[J]. Energy, 2016, 94:811-820.
[28]ZHOU Z, LAU B. The daylighting benefit of Chinese traditional eave corner structure-Nen Qiang Fa Qiang: Daylighting study of canglang pavilion in Suzhou[M]. Chinese Univ Hong Kong, Shatin: Sch Architecture, 2018.
[29]王国安,米鸿涛,邓天宏, 等.太阳高度角和日出日落时刻太阳方位角一年变化范围的计算[J].气象与环境科学, 2007(S1): 161-4.
WANG Guo'an, MI Hongtao, DENG Tianhong, et al. Calculation of the change range of the sun high angle and the azimuth of sunrise and sunset in one year[J]. Meteorological and Environmental Sciences, 2007(S1): 161-4.
[30]贺大龙.山西芮城广仁王庙唐代木构大殿[J].文物, 2014(8): 69-80.
HE Dalong. Tang dynasty wooden hall of Guangrenwang temple, Ruicheng, Shanxi Province[J]. Cultural Relics,2014(8): 69-80.
[31]成丽.宋《营造法式》研究史初探[D]. 天津:天津大学, 2010.
Cheng Li. The summary reviews of yingzaofashi study history[D]. Tianjin: Tianjin University, 2010.
[32]PACHECO R, ORDONEZ J, MARTINEZ G. Energy efficient design of building: A review[J]. Renewable & Sustainable Energy Reviews, 2012, 16(6): 3559-3573.
[33]GALAL K S. The impact of classroom orientation on daylight and heat-gain performance in the Lebanese Coastal zone[J]. Alexandria Engineering Journal, 2019, 58(3): 827-839.
[34]VALLADARES-RENDON L G, SCHMID G, LO S-L. Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of facade shading systems[J]. Energy and Buildings, 2014, 140:458-479.
[35]FLORIDES G A, TASSOU S A, KALOGIROU S A, et al. Measures used to lower building energy consumption and their cost effectiveness[J]. Applied Energy, 2002, 73(3/4): 299-328.
[36]李辉.比较中日木结构建筑中的檐高与檐出的比例关系[C]//《营造》第五辑——第五届中国建筑史学国际研讨会会议论文集(上).广州:华南理工大学,2010:370-377.
LI Hui. A comparative study on the eave height to depth proportion between Chinese and Japanese traditional architecture[C]//The fifth volume of “construction”--Proceedings of the 5th International Conference on Chinese Architectural History(Part 1). Guangzhou:South China Univeristy of Technology, 2010:370-377.
[37]侯幼彬,李婉贞.中国古代建筑历史图说[M].北京:中国建筑工业出版社, 2003.
HOU Youbin, LI Wanzhen. Historical illustration of ancient Chinese Architecture[M]. Beijing: China Architecture & Building Press, Beijing, 2003.

备注/Memo

备注/Memo:
收稿日期:2021-05-12修改稿日期:2022-06-06
基金项目:石河子大学科技成果转化基金项目(KX03090215)
第一作者:付宗驰(1980—),男,硕士,副教授,主要从事地域气候适应性风景园林理论与实践研究.E-mail:fzch_agr@shzu.edu.cn.通信作者:裘鸿菲(1962—),女,博士,教授,主要从事风景园林规划设计与理论方面研究.E-mail:qiuhongfei@hzau.edu.cn
更新日期/Last Update: 2022-06-28