[1]高力强,费若雯,刘 敏,等.含有氢能汽车和储能的新型光伏建筑能源系统建模[J].西安建筑科技大学学报(自然科学版),2022,54(03):414-422.[doi:10.15986/j.1006-7930.2022.03.012]
 GAO Liqiang,FEI Ruowen,LIU Min,et al.Modelling of a novel photovoltaics building energy system considering hydrogen vehicles and energy storage[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(03):414-422.[doi:10.15986/j.1006-7930.2022.03.012]
点击复制

含有氢能汽车和储能的新型光伏建筑能源系统建模()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年03期
页码:
414-422
栏目:
出版日期:
2022-06-28

文章信息/Info

Title:
Modelling of a novel photovoltaics building energy system considering hydrogen vehicles and energy storage
文章编号:
1006-7930(2022)03-0414-09
作者:
高力强费若雯刘 敏邓冠中
(石家庄铁道大学 建筑与艺术学院,河北 石家庄 050043)
Author(s):
GAO LiqiangFEI RuowenLIU MinDENG Guanzhong
(School of Architecture and Art,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
关键词:
近零能耗建筑 氢能汽车 储能 分布式光伏
Keywords:
nearly zero-energy buildings hydrogen vehicles energy storage distributed photovoltaic
分类号:
TU85,TK91
DOI:
10.15986/j.1006-7930.2022.03.012
文献标志码:
A
摘要:
针对近零能耗建筑和氢能汽车与储能技术的集成,提出了一种新型低碳光伏建筑综合能源系统数学模型.该系统以分布式光伏作为可再生电力来源,并含有电解-储氢和储冷储热系统.模型考虑建筑附属氢能汽车(Hydrogen Vehicles,HVs)向系统的供能过程,并针对汽车的行驶特性,利用蒙特卡洛方法建立汽车调度模型.最后生成了一个混合整数线性优化问题,并通过具体算例,分析了系统在三个典型日的电-热-冷调度结果.算例表明:HVs与建筑系统集成将有助于降低系统的交换功率,光伏装机量的提升与储能设备的应用则有助于降低系统碳排放量.
Abstract:
In order to integrate hydrogen vehicles and energy storage technology with nearly-zero energy buildings, a novel mathematical model of low-carbon photovoltaic building integrated energy system was proposed, which used photovoltaic as renewable power source, and contained electrolysis-hydrogen storage system and cool/heat storage system. In the model, hydrogen vehicles(HVs)attached to buildings were included in the system energy scheduling process. According to the driving characteristics of vehicles, the vehicle scheduling model was established through Monte Carlo method. Finally, a mixed integer linear optimization problem was generated, and the power-heat-cold dispatching results of three typical days were analyzed through a case study. The case study shows that the integration of HVs and building will help to reduce the exchange power between the building and public grid, and the improvement of photovoltaic installed capacity and the application of energy storage system will help to reduce the total carbon emission of the system.

参考文献/References:

[1]王宇, 李婉, 何发龙. 绿色公共建筑运行能耗特征分析及能效评估[J]. 西安建筑科技大学学报(自然科学版), 2017,49(4): 565-572.
WANG Yu, LI Wan, HE Falong. Operation energy consumption characteristics analysis and energy efficiency evaluation of green public building[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2017(4): 565-572.
[2]徐伟. 中国近零能耗建筑研究和实践[J]. 科技导报, 2017(10): 40-45.
XU Wei. Nearly zero energy building research and devel opment in China[J]. Science & Technology Review. 2017(10): 40-45.
[3]CAO S. Comparison of the energy and environmental impact by integrating a H2 vehicle and an electric vehicle into a zero-energy building[J]. Energy Conversion and Management, 2016, 123: 153-173.
[4]张兴惠, 马质聪, 高晨晖, 等. 山西农村住宅建筑能耗分析及节能改造策略[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(5): 667-673.
ZHANG Xinghui, MA Zhicong, GAO Chenhui, et al. Analysis on energy consumption of rural residential buildings in Shanxi[J]. J. of Xi'an Univ. of Arch. & Tech., 2020, 52(05): 667-673.
[5]王登甲, 刘艳峰, 刘加平. 间歇采暖太阳能建筑设计及运行优化研究[J]. 西安建筑科技大学学报(自然科学版), 2012, 44(5): 720-725.
WANG Dengjia, LIU Yanfeng, LIU Jiaping. Study on the design and operation optimization of intermittent solar heating building[J]. J. of Xi'an Univ. of Arch. & Tech(Natural Science Edition)., 2012, 44(5): 720-725.
[6]李金平, 王兆福, 王航, 等. 严寒地区主被动太阳能协同采暖室内舒适度研究[J]. 西安建筑科技大学学报(自然科学版), 2019,51(4): 584-590.
LI Jinping, WANG Zhaofu, WANG Hang, et al. Research on indoor comfort of active and passive solar cooperative heating in cold Tibetan region[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2019,51(4): 584-590.
[7]任文诗, 高红均, 刘友波, 等. 智能建筑群电能日前优化共享[J]. 电网技术, 2019, 43(7): 2568-2577.
REN Wenshi, GAO Hongjun, LIU Youbo, et al. Optimal day-ahead electricity scheduling and sharing for smart building cluster[J]. Power System Technology, 2019, 43(7): 2568-2577.
[8]FILE I, DECISION C. Council of the european union[J]. Brussels European Council, 2010, 42(3): 898-900.
[9]GUPTA R, BRUCE-KONUAH A, HOWARD A, et al. Achieving energy resilience through smart storage of solar electricity at dwelling and community level[J]. Energy, 2019, 195: 1-15.
[10]SHARMA V, HAQUE M H, AZIZ S M J R E. Energy cost minimization for net zero energy homes through optimal sizing of battery storage system. 2019, 141: 278-286.
[11]NIU J, TIAN Z, LU Y, et al. Flexible dispatch of a building energy system using building thermal storage and battery energy storage[J]. Applied Energy, 2019, 243: 274-287.
[12]SILVERMAN R E, FLORES R J, BROUWER J. Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community-ScienceDirect[J]. Applied Energy, 2020, 280: 115974.
[13]MUNKHAMMAR J, GRAHN P, WIDÉN J. Quantifying self-consumption of on-site photovoltaic power generation in households with electric vehicle home charging[J]. Solar Energy, 2013, 97: 208-216.
[14]MUNKHAMMAR J, BISHOP J D, SARRALDE J J, et al. Household electricity use, electric vehicle home-charging and distributed photovoltaic power production in the city of Westminster[J]. Energy and Buildings, 2015, 86: 439-448.
[15]HAIDAR A M, MUTTAQI K M, SUTANTO D. Technical challenges for electric power industries due to grid-integrated electric vehicles in low voltage distributions: A review[J]. Energy Conversion and Management, 2014, 86: 689-700.
[16]中华人民共和国国务院新闻办公室.《新时代的中国能源发展》白皮书[R/OL].(2020-12-21)[2021-04-22]. http://www.gov.cn/zhengce/2020-12/21/content_5571916. htm.
The State Council Information Office of the People's Republic of China. White paper on China's energy development in the new era[R/OL].(2020-12-21)[2021-04-22]. http://www.gov.cn/zhengce/2020-12/21/content_5 571916.htm.
[17]Ulleberg Ø, Mørner S. TRNSYS simulation models for solar-hydrogen systems[J]. Solar energy, 1997, 59(4/6): 271-279.
[18]BOSE T, AGBOSSOU K, KOLHE M, et al. Case study-stand-alone energy systems based on hydrogen production[J]. International Energy Agency, 2003: 1-9.
[19]CAO S, ALANNE K. Technical feasibility of a hybrid on-site H2 and renewable energy system for a zero-energy building with a H2 vehicle[J]. Applied Energy, 2015, 158: 568-583.
[20]ROBLEDO C B, OLDENBROEK V, ABBRUZZESE F, et al. Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building[J]. Applied Energy, 2018, 215: 615-629.
[21]KUMAR K N, SIVANEASAN B, CHEAH P H, et al. V2G Capacity Estimation Using Dynamic EV Scheduling[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 1051-1060.
[22]MOHAMED A, SALEHI V, MA T, et al. Real-time energy management algorithm for plug-in hybrid electric vehicle charging parks involving sustainable energy[J]. IEEE Transactions on Sustainable Energy, 2014, 5(2): 577-586.
[23]HAMERSMA P J, ROSMALEN J V, MICHELS J, et al. Effect of hydrogen addition on the route preference in natural gas flow in regular, horizontal T-junctions[J]. International Journal of Hydrogen Energy, 2007, 32(14): 3059-3065.

备注/Memo

备注/Memo:
收稿日期:2021-05-25修改稿日期:2022-05-20
基金项目:河北省教育厅自然科学基金重点项目(ZD2020162)
第一作者:高力强(1975—),男,博士,教授,主要从事建筑设计及其理论、太阳能建筑环境设计方面的研究.E-mail:365092617@qq.com
更新日期/Last Update: 2022-06-28