[1]赵必大,林时康,陈界佑,等.X形圆钢管节点平面内受弯滞回性能试验研究[J].西安建筑科技大学学报(自然科学版),2022,54(04):517-523.[doi:10.15986/j.1006-7930.2022.04.006]
 ZHAO Bida,LIN Shikang,CHEN Jieyou,et al.Experimental study on the in-plane flexural hysteretic behavior of CHS X-joints[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(04):517-523.[doi:10.15986/j.1006-7930.2022.04.006]
点击复制

X形圆钢管节点平面内受弯滞回性能试验研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年04期
页码:
517-523
栏目:
出版日期:
2022-08-28

文章信息/Info

Title:
Experimental study on the in-plane flexural hysteretic behavior of CHS X-joints
文章编号:
1006-7930(2022)04-0517-07
作者:
赵必大林时康陈界佑吴双双李福龙陈 镒
(浙江工业大学 土木工程学院,浙江 杭州 310023)
Author(s):
ZHAO Bida LIN Shikang CHEN Jieyou WU Shuangshuang LI Fulong CHEN Yi
(College of Civil Engineering, Zhejiang University of technology, Hangzhou 310023,China)
关键词:
X形圆钢管相贯节点 平面内受弯滞回性能 平面内抗弯承载力 延性 耗能
Keywords:
unstiffened CHS X-joints in-plane flexural hysteretic behavior in-plane flexural capacity ductility energy dissipation
分类号:
TU391
DOI:
10.15986/j.1006-7930.2022.04.006
文献标志码:
A
摘要:
为了研究X形圆钢管节点平面内受弯滞回性能,进行了两个节点在往复平面内弯矩作用下的试验研究.结果表明:两个节点的破坏模式均为相贯线附近焊缝热影响区的主管管壁开裂,开裂前主管管壁经历显著的塑性发展; 节点表现出良好的滞回性能; 主管管壁塑性变形和开裂后的裂纹扩散成为节点的主要耗能模式,尽管支管根部的塑性变形对耗能也有贡献.对比支主管正交节点(支主管夹角90°),支主管斜交节点(支主管夹角非90°)具有更高的抗弯承载力,并且具有更好的延性和耗能能力.当支主管斜交且夹角较大(大于70°)时,夹角正弦的倒数能较好地反映了支主管斜交对节点承载力的有利影响.
Abstract:
To study the in-plane flexural hysteretic behavior of unstiffened circular hollow section(CHS)X-joints, an experimental test on two CHS X-joints with different brace-to-chord angle(BCA)under cyclic in-plane moment(IPM)were performed. The results show that the failure modes of both joints are cracking of the chord wall in the heat affected zone of the weld near the intersecting line, and the chord wall undergoes significant plastic deformation before cracking. Two X-joints behave excellently in hysteretic behavior. The plastic deformation of the chord wall and the crack propagation after cracking become the main energy consumption modes of the joint, although the plastic deformation of the branch pipe root also contributes to the energy consumption. In contrast, the X-joints with brace-to-chord skew(i.e., BCA is not 90°)have better ductility and higher flexural capacity and energy consumption capacity than the X-joints with brace-to-chord orthogonal(i.e., BCA is 90°). For the X-joints with brace-to-chord skew but larger BCA(larger than 70°), the reciprocal of the sine of BCA can reflects the beneficial influence of brace-to-chord skew on the in-plane flexural capacity.

参考文献/References:

[1]CHOO Y S, QIAN X D, LIEW JYR et al. Static strength of thick-walled CHS X-joints—Part I. New approach in strength definition[J]. Journal of Constructional Steel Research. 2003, 59: 1201-1228.
[2]王德禹, 陈铁云. 基于圆环模型的空间XX管接头轴压极限强度分析[J]. 上海交通大学学报. 1997, 31(11): 116-120.
WANG Deyu, CHEN Tieyun. Static strength analysis of axial loaded multiplanar tubular XX-joints based on ring model[J]. Journal of Shanghai Jiaotong University. 1997, 31(11): 116-120.
[3]舒兴平, 郑伯兴. KT型相贯节点极限承载力非线性有限元分析[J]. 湖南大学学报(自然科学版). 2006, 33(6): 1-6.
SHU Xingping, ZHENG Boxing. Nonlinear finite element analysis of the ultimate strength on tubular KT-joints[J]. Journal of Hunan University(Natural sciences). 2006, 33(6): 1-6.
[4]孙建东,童乐为,王斌,等. 空间KK形圆管搭接节点承载力计算公式改进研究[J]. 建筑结构学报,2013,34(2): 99-105.
SUN Jiandong, TONG Lewei, WANG Bin, et al. Improved formula for loading capacity of multi-planar overlapped CHS KK-joints[J]. Journal of Building Structures, 2013, 34(2): 99-105.
[5]马昕煦, 陈以一. 支方主圆T形相贯节点轴压承载力计算公式[J]. 工程力学, 2017, 34(5): 163-170.
MA Xinxu, CHEN Yiyi. Ultimate strength formulae for RHS-CHS T-joints under axial compression[J]. Engineering Mechanics, 2017, 34(5): 163-170.
[6]陈誉, 黄勇, 冯然. X形圆管斜插板节点轴压性能试验研究[J]. 建筑结构学报. 2015, 36(3): 90-97.
CHEN Yu, HUANG Yong, FENG Ran. Experimental study on compressive property of circular tube-skewed gusset X-joints[J]. Journal of Building Structures, 2015, 36(3): 90-97.
[7]ZHAO B D, LIU C Q, YAO Z Y, et al. Capacity difference of circular hollow section X-joints under brace axial compression and tension[J]. International Journal of Steel Structures, 2020, 20(5): 1443-1453.
[8]高春彦, 杨卫平, 李斌. 圆钢管混凝土K型焊接相贯节点力学性能数值模拟[J]. 西安建筑科技大学学报(自然科学版). 2018, 50(1): 18-22.
GAO Chunyan, YANG Weiping, LI Bin. Numerical simulation on the mechanical behavior of the concrete- filled circular steel tubular welded K-joints[J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition). 2018, 50(1): 18-22.
[9]武振宇,谭慧光,张耀春. 不等宽T型方钢管节点的刚度计算[J]. 哈尔滨建筑大学学报. 2002, 35(5): 22-27.
WU Zhenyu, TAN Huiguang, ZHANG Yaochun. Stiffness of stepped T-type RHS joints subjected to axial loading[j]. Journal of Harbin University of C. E.& Architecture. 2002, 35(5): 22-27.
[10]王伟. 圆钢管相贯节点非刚性性能及对结构整体行为的影响效应[D]. 上海: 同济大学, 2005.
WANG Wei. Non-rigid behavior of unstiffened circular tubular joints and their effects on global performance of steel tubular structures[D]. Shanghai: TongJi University,2005.
[11]赵必大,刘成清,章圣冶,等. Y型圆钢管相贯节点的轴向刚度计算模型[J].西南交通大学学报(自然科学版), 2015, 50(5): 872-878.
ZHAO Bida, LIU Chengqing, ZHAN Shenyan, et al. Calculation model for axial rigidity of CHS Y-type joints[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 872-878.
[12]ZHAO B D, CHEN Y, LIU C Q, et al. An axial semi-rigid connection model for cross-type transverse branch plate to-CHS joints[J]. Engineering Structures, 2019, 181: 413-426.
[13]陈以一, 沈祖炎, 翟红, 等. 圆钢管相贯节点滞回特性的实验研究[J]. 建筑结构学报, 2003, 24(6): 57-62.
CHEN Yiyi, SHEN Zuyan, ZHAI Hong, et al. Experimental research on hysteretic property of unstiffened space tubular joints[J]. Journal of Building Structures, 2003, 24(6): 57-62.
[14]ZHAO X Z, LIU J T, XU X B, et al. Hysteretic behaviour of overlapped tubular k-joints under cyclic loading[J]. Journal of Constructional Steel Research. 2018, 145: 397-413.
[15]王彬, 赵宪忠. 平面K形圆钢管搭接节点恢复力模型研究[J]. 建筑结构. 2012, 42(S1): 716-720.
WANG Bin, ZHAO Xianzhong. Research on hysteretic model of overlapped CHS K-joints[J]. Building structure. 2012, 42(S1): 716-720.
[16]陈以一,王伟,周锋. 钢管结构——新需求驱动的形式拓展和性能提升[J]. 建筑结构学报,2019,40(3): 1-20.
CHEN Yiyi, WANG Wei, ZHOU Feng. Steel tubular structures: configuration innovation and performance improvement driven by new requirements[J]. Journal of Building Structures, 2019, 40(3): 1-20.
[17]WANG W, CHEN Y Y, MENG X D, et al. Behavior of thick-walled CHS X-joints under cyclic out-of-plane bending[J]. Journal of constructional Steel Research, 2010, 66: 826-834.
[18]ZHAO B D, FANG C, WANG W, et al. Seismic performance of CHS X-connections under out-of-plane bending[J]. Journal of constructional Steel Research, 2019, 158: 591-603.
[19]孟宪德, 陈以一, 王伟. X形圆钢管相贯节点平面外受弯滞回模型研究[J]. 土木工程学报. 2012, 45(8): 8-15.
MENG X D, CHEN Y Y, WANG W. A hysteretic model of unstiffened CHS X-joints under out-of-plane bending[J]. China Civil Engineering Journal. 2012, 45(8): 8-15.
[20]ZHAO B D, SUN C, CAI Y Z, et al. An out-of-plane bending hysteretic model for multi-planar CHS X- connections[J]. Structures, 2020, 23: 335-350.
[21]中华人民共和国住房和城乡建设部. 钢结构焊接规范: GB50661—2011[S]. 北京: 中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for welding of steel structure of building: GB50661—2011[S]. Beijing: China Architecture Industry Press, 2012.
[22]中华人民共和国住房和城乡建设部. 钢结构设计标准: GB50017—2017[S]. 北京: 中国建筑工业出版社,2018.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of steel structures: GB50017—2017[S]. Beijing: China Architecture Industry Press, 2018.
[23]European Committee for standardization. Eurocode 3: Design of steel structures, part 1.8: Design of joints[S]. Brussels: CEN, 2005.
[24]KUROBANE Y, MAKINO Y, OCHI K. Ultimate resistance of unstiffened tubular joints[J]. Journal of Structural Engineering, 1984, 110(2):385-40.
[25]中华人民共和国住房与城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for seismic test of buildings: JGJ/T 101—2015[S]. Beijing: China Architecture Industry Press, 2015.

备注/Memo

备注/Memo:
收稿日期:2021-11-29修改稿日期:2022-08-22
基金项目:浙江省自然科学基金项目(LY20E080020)
第一作者:赵必大(1976—),男,博士,副教授,主要从事钢结构与组合结构方面的研究.E-mail:zhaobida@126.com
更新日期/Last Update: 2022-08-28