[1]王 鑫,李安桂,李 扬,等.基于ARIMA-LSTM模型的综合能源系统负荷与风光资源预测[J].西安建筑科技大学学报(自然科学版),2022,54(05):762-769.[doi:10.15986/j.1006-7930.2022.05.015 ]
 WANG Xin,LI Angui,LI Yang,et al.Multivariate load prediction and wind-solar resource characteristic quantity prediction of integrated energy system based on ARIMA-LSTM model[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(05):762-769.[doi:10.15986/j.1006-7930.2022.05.015 ]
点击复制

基于ARIMA-LSTM模型的综合能源系统负荷与风光资源预测()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年05期
页码:
762-769
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Multivariate load prediction and wind-solar resource characteristic quantity prediction of integrated energy system based on ARIMA-LSTM model
文章编号:
1006-7930(2022)05-0762-08
作者:
王 鑫1李安桂1李 扬1卜令晨1彭怀午2牛东圣2许晨琛2韩 欧1
(1.西安建筑科技大学 建筑设备科学与工程学院,陕西 西安,710055; 2.太阳能利用工程技术研究所,中国电建集团西北勘测设计研究院有限公司,陕西 西安,710065)
Author(s):
WANG Xin1LI Angui1LI Yang1BU Lingchen1PENG Huaiwu2NIU Dongsheng2XU Chenchen2HAN Ou1
(1.School of Building Services Science and Engineering, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China; 2.Institute of Solar Engineering Technology, Northwest Engineering Corporation Limited, Power China, Xi'an 710065, China)
关键词:
综合能源系统 负荷预测 构建模型 误差分析
Keywords:
integrated energy system load forecasting construction model error analysis
分类号:
TU111.19+5.4; TK 01
DOI:
10.15986/j.1006-7930.2022.05.015
文献标志码:
A
摘要:
在能源互联网快速发展的背景下,研究分析了综合能源系统的多元负荷预测模型及理论方法.针对传统ARIMA(Autoregressive Moving Average Model,ARMA)模型仅能处理线性关系的问题,将ARIMA模型与LSTM(Long-Short Term Memory,LSTM)网络模型结合,提出并建立了ARIMA-LSTM模型.该模型不仅兼容冷、热、气、电等多元负荷的预测,并且可以用于风速、辐射照度等数据的预测,有较好的适应性和预测精度.
Abstract:
Under the background of the rapid development of energy Internet, this paper studies and analyzes the multivariate load prediction and theoretical method of integrated energy system. Aiming at the problem that the traditional ARIMA model can only deal with the linear relationship, the ARIMA-LSTM model is proposed and established by combining ARIMA model with LSTM( Long-Short Term Memory, LSTM )network model. The model is not only compatible with the prediction of multiple loads such as cold, heat, gas and electricity, but also can be used for the prediction of wind speed, radiation illumination and other data, and has good adaptability and prediction accuracy.

参考文献/References:

[1]刘超. 考虑混合储能的综合能源系统调度方法研究[D].哈尔滨:哈尔滨工业大学,2020.
LIU Chao. Research on scheduling method of integrated energy system considering hybrid energy storage[D]. Harbin:Harbin Institute of Technology, 2020.
[2]王奖, 邓丰强, 张勇军, 等. 园区能源互联网的规划与运行研究综述[J]. 电力自动化设备, 2021, 41(2): 24-32, 55.
WANG Jian, DENG Fengqiang, ZHANG Yongjun, et al. Review on the planning and operation of energy Internet in park[J]. Electric Power Automation Equipment, 2021, 41(2): 24-32, 55.
[3]余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13.
YU Xiaodan, XU Xiandong, CHEN Shuoyi, et al. Integrated energy system and energy Internet brief[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13.
[4]付学谦, 孙宏斌, 郭庆来, 等. 能源互联网供能质量综合评估[J]. 电力自动化设备, 2016, 36(10): 1-7.
FU Xueqian, SUN Hongbin, GUO Qinglai, et al. Comprehensive evaluation of energy Internet energy supply quality[J]. Electric Power Automation Equipment, 2016, 36(10): 1-7.
[5]贾云辉, 张峰. 考虑分布式风电接入下的区域综合能源系统多元储能双层优化配置研究[J]. 可再生能源, 2019, 37(10): 1524-1532.
JIA Yunhui, ZHANG Feng. Optimal allocation of multi-layer energy storage in regional integrated energy system considering distributed wind power access[J]. Renewable Energy, 2019, 37(10): 1524-1532.
[6]熊焰, 吴杰康, 王强, 等. 风光气储互补发电的冷热电联供优化协调模型及求解方法. 中国电机工程学报[J], 2015, 35: 3616-3625.
XIONG Yan, WU Jiekang, WANG Qiang, et al. Optimal coordination model and solution method of combined cooling, heating and power generation for wind-wind gas storage complementary power generation. Proceedings of the CSEE, 2015, 35: 3616-3625.
[7]SADAEI Hossein Javedani, GUIMARAES Frederico Gadelha. Short-term load forecasting method based on fuzzy time series,seasonality and long memory process[J]. International journal of approximate reasoning, 2017, 83(1): 196-217.
[8]陈淑绵.1997-2010年我国能源生产的预测[J].统计与预测,1998(2):40-41,15.
CHEN Shumian. The forecast of energy production in China from 1997 to 2010[J]. Statistics and Forecast, 1998(2):40-41,15.
[9]王琦, 杨超杰, 李丽锋. 改进 Elman 神经网络在短期热负荷预测中的应用[J].工业仪表与自动化装置, 2020(1): 50-53.
WANG Qi, YANG Chaojie, LI Lifeng. Application of Improved Elman Neural Network in Short-term Thermal Load Prediction[J]. Industrial Instrumentation & Automation, 2020(1): 50-53.
[10]卢建昌, 王柳. 基于时序分析的神经网络短期负荷预测模型研究[J]. 中国电力, 2005, 38(7): 11-14.
LU Jianchang, WANG Liu. Research on short-term load forecasting model of neural network based on time series analysis[J]. China Electric Power, 2005, 38(7): 11-14.
[11]姜勇. 电力系统短期负荷预测的模糊神经网络方法[J]. 继电器, 2002, 30(7): 11-13.
JIANG Yong. Fuzzy Neural Network Method for Short-term Load Prediction of Power System[J]. Relay, 2002, 30(7): 11-13.
[12]李广, 邹德忠, 谈顺涛. 基于混沌神经网络理论的小电网短期电力负荷预测[J]. 电力自动化设备, 2006, 26(2): 50-52.
LI Guang, ZOU Dezhong, TAN Shuntao. Short-term Power Load Prediction of Small Power Grid Based on Chaotic Neural Network Theory[J]. Electric Power Automation Equipment, 2006, 26(2): 50-52.
[13]梁海峰, 涂光瑜, 唐红卫. 遗传神经网络在电力系统短期负荷预测中的应用[J]. 电网技术, 2001, 25(1): 49-53.
LIANG Haifeng, TU Guangyu, TANG Hongwei. Application of Genetic Neural Network in Short-term Load Prediction of Power System[J]. Power Network Technology, 2001, 25(1): 49-53.
[14]杨熊, 于军琪, 郭晨露, 等. 基于改进 PSO-BP 神经网络的冰蓄冷空调冷负荷动态预测模型[J]. 土木与环境工程学报, 2019, 41(1): 168-174.
YANG Xiong, YU Junqi, GUO Chenlu, et al. Dynamic prediction model of cold load for ice storage air conditioning based on improved PSO-BP neural network[J].Chinese Journal of Civil and Environmental Engineering, 2019, 41(1): 168-174.
[15]王茜,于军琪.基于相似日LM神经网络的高校图书馆能耗预测[J].西安建筑科技大学学报(自然科学版),2022,54(3):459-465.
WANG Qian, YU Junqi. Energy consumption prediction model of a university library based on Similar day selection and Levenberg-marquardt neural network [J]. J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(3):459-465.
[16]卫小英, 霍丽骊. 博克思-詹金斯预测方法简介[J].预测, 1984(S1): 35-39.
WEI Xiaoying, HUO Lili. Box-jenkins forecasting method introduction[J]. Forecasting, 1984(S1): 35-39.
[17]王鑫, 吴际, 刘超, 等.基于LSTM循环神经网络的故障时间序列预测[J].北京航空航天大学学报, 2018,44(4):772-784.
WANG Xin, WU Ji, LIU Chao, et al. Fault time series prediction based on LSTM cyclic neural network[J]. Journal of Beijing University of Aeronautics and Astronsutics,2018,44(4):772-784.
[18]MUZAFFAR S, AFSHARI A. Short-term load forecasts using LSTM networks[J]. Energy Procedia, 2019, 158:2922-2927.
[19]FAN Dongyan, SUN Hai, YAO Jun, et al. Well production forecasting based on ARIMA-LSTM model considering manual operations[J]. Energy, 2021, 220: 119708.

备注/Memo

备注/Memo:
收稿日期:2021-07-30修改稿日期:2022-10-08
基金项目:十二五国家科技支撑课题合作单位基金资助项目(2011BAJ03B03-5)
第一作者:王 鑫(1996—),男,硕士,主要研究方向为综合能源系统.E-mail:xjd_wangxin@163.com
通信作者:李安桂(1963—),男,博士生导师,主要研究建筑通风空调气流组织、地下空气环境、太阳能建筑一体化等.E-mail:liangui@xauat.edu.cn
更新日期/Last Update: 2022-10-28