[1]蒲 静,蒋福建,袁艳平,等.非等温热源作用下的工业热廊道热压自然通风特性研究[J].西安建筑科技大学学报(自然科学版),2022,54(05):770-779.[doi:10.15986/j.1006-7930.2022.05.016 ]
 PU Jing,JIANG Fujian,YUAN Yanping,et al.Study on natural ventilation characteristics of industrial thermal corridor under non-isothermal heat source[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2022,54(05):770-779.[doi:10.15986/j.1006-7930.2022.05.016 ]
点击复制

非等温热源作用下的工业热廊道热压自然通风特性研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
54
期数:
2022年05期
页码:
770-779
栏目:
出版日期:
2022-10-28

文章信息/Info

Title:
Study on natural ventilation characteristics of industrial thermal corridor under non-isothermal heat source
文章编号:
1006-7930(2022)05-0770-10
作者:
蒲 静蒋福建袁艳平敬瑶阁
(西南交通大学 机械工程学院,四川 成都 610031)
Author(s):
PU Jing JIANG Fujian YUAN Yanping JING Yaoge
(School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)
关键词:
工业建筑 热廊道 热压自然通风 非等温热源
Keywords:
industrial building thermal corridor buoyancy-driven natural ventilation non-isothermal heat source
分类号:
TU834
DOI:
10.15986/j.1006-7930.2022.05.016
文献标志码:
A
摘要:
在工业建筑中,因干燥、烧制等生产工艺的要求,连续排列的多个高温设备将组成具有大长宽比的带状体热源,并在此类热源附近形成高温廊道.本文以工业车间热廊道为对象,通过数值模拟的方法,研究了在非等温热源作用下,其内部热压自然通风的基本特性.首先对比分析了两热源在等温和非等温下的厂房温度场和速度场分布差别:非等温热源作用下,高温热源侧的气流因浮力向上迁移,低温热源侧的气流则被诱导降沉至中间廊道,以减缓中部区域的热堆积.并进一步研究了两热源的不同温度差异对热压自然通风效果的影响,结果表明,随着两热源温差的增大,廊道上方左右两股气流的汇合位置逐渐向高温热源侧偏移.研究结果可为热廊道厂房在非等温热源作用下的自然通风设计提供参考.
Abstract:
In industrial buildings, due to the requirements of drying, firing and other processes, continuous arrangement of multiple high-temperature equipment will form strip heat sources with large aspect ratio, and form high temperature corridors near such heat sources. In this paper, the basic characteristics of the internal buoyancy-driven natural ventilation under non-isothermal heat sources are studied by numerical simulation with the thermal corridor of industrial workshop as the object. Firstly, the difference of temperature field and velocity field distribution between the two heat sources under isothermal and non-isothermal conditions is compared and analyzed. Under the action of non-isothermal heat sources, the airflow on the high temperature heat source side moves upside due to buoyancy, and the airflow on the low temperature heat source side is induced to sink to the middle corridor to slow down the heat accumulation in the central region. The influence of different temperature differences between the two heat sources on the effect of buoyancy-driven natural ventilation is further studied. The results show that with the increase of the temperature difference between the two heat sources, the convergence position of the left and right airflows above the corridor gradually shifts to the high-temperature heat source side. The research results can provide reference for natural ventilation design of thermal corridor plant under non-isothermal heat source.

参考文献/References:

[1]WANG Y, ZHAO T T, CAO Z X, et al. The influence of indoor thermal conditions on ventilation flow and pollutant dispersion in downstream industrial workshop[J]. Building and Environment, 2021, 187(1):107400.1-107400.13.
[2]KANG Jong-Hoon, LEE Sang-Joon. Improvement of natural ventilation in a large factory building using a louver ventilator[J]. Building and Environment, 2008, 43(12):2132-2141.
[3]KATUNSKY Dusan, KORJENIC Azra, KATUNSKA Jana, et al. Analysis of thermal energy demand and saving in industrial buildings: a case study in Slovakia[J]. Building and Environment, 2013, 67(2):138-146.
[4]WANG Y, MENG X J, YANG X N, et al. Influence of convection and radiation on the thermal environment in an industrial building with buoyancy-driven natural ventilation[J]. Energy and Buildings, 2014, 75(6):394-401.
[5]CAMILLE Allocca, CHEN Q Y, LEON R. Design analysis of single-sided natural ventilation[J]. Energy and Buildings, 2003, 35(8):785-795.
[6]TOBIAS Schulze, URSULA Eicker. Controlled natural ventilation for energy efficient buildings[J]. Energy and Buildings, 2013, 56(1):221-232.
[7]CARDINALE N, MICUCCI M, RUGGIERO F. Analysis of energy saving using natural ventilation in a traditional Italian building[J]. Energy and Buildings, 2003, 35(2):153-159.
[8]吴珍珍. 深圳市办公建筑自然通风应用研究[D]. 重庆: 重庆大学, 2008.
WU Zhenzhen. Application Study on Natural Ventilation of Official Buildings in Shenzhen[D]. Chongqing: Chongqing University, 2008.
[9]ABDALLA IE, COOK MJ, REES SJ, et al. Large-eddy simulation of buoyancy-driven natural ventilation in an enclosure with a point heat source[J]. International Journal of Computational Fluid Dynamics, 2007, 21(5/6):231-245.
[10]ABDALLA I E, COOK M J, HUNT G R. Numerical study of thermal plume characteristics and entrainment in an enclosure with a point heat source[J].Engineering Applications of Computational Fluid Mechanics, 2009, 3(4):608-630.
[11]HATTORI T, ARMFIELD S W, KIRKPATRICK M P. A parametric investigation of natural ventilation flow with a line heat source[J]. Anziam J Electron Suppl, 2010, 52:1060-1083.
[12]CHATI D, BOUABDALLAH S, GHERNAOUT B. Ventilation of square cavity containing a heat source[J]. Defect and Diffusion Forum, 2021, 406:149-163.
[13]CASTILLO J A, TOVAR R, HUELSZ G. Natural ventilation in a room with a horizontal cylindrical heat source, a window and bottom or top vents[J]. Building and Environment, 2021, 191(3):1-13.
[14]CHATI D, BOUABDALLAH S, GHERNAOUT B, et al. Turbulent mixed convective heat transfer in a ventilated enclosure with a cylindrical/cubical heat source: a 3D analysis[J]. Energy Sources Part A: Recovery Utilization and Environmental Effects, 2021(2):1-18.
[15]吴晅, 武文斐. 单、双热源置换通风系统流场及温度场的数值模拟[J]. 暖通空调, 2005, 35(1):15-19.
WU Xuan, WU Wenfei. Numerical simulation on velocity and temperature distribution of displacement ventilation systems with one or two heat sources[J]. HVAC, 2005, 35(1): 15-19.
[16]隋学敏, 官燕玲, 李安桂,等. 双热源热压自然通风流场数值模拟研究[J]. 建筑科学, 2007, 23(10):13-17.
SUI Xuemin, GUAN Yanling, LI Angui, et al. Numerical Simulation Study on Flow Field of Thermal Natural Ventilation with Double Heating Sources[J]. Building Science, 2007, 23(10): 13-17.
[17]COOPER P, LINDEN P F. Natural ventilation of an enclosure containing two buoyancy sources[J]. Journal of Fluid Mechanics, 1996, 311(1):153-176.
[18]倪波. 双热源置换通风系统的实验研究[J]. 暖通空调, 2002, 32(5):17-19.
NI Bo. Experimental study of displacement ventilation system with two sources[J]. HVAC, 2002, 32(5): 17-19.
[19]王迪. 物理几何条件对多热源小空间自然对流换热的影响[D]. 吉林: 吉林建筑大学, 2016.
WANG Di. Influence of physical geometry on natural convection heat transfer in a small space with multiple heat sources[D]. Jilin: Jilin Jianzhu University, 2016.
[20]HINOJOSA J F, OROZCO D A, XAMAN J. Experimental and numerical study of a ventilated room with located heat sources[J]. Journal of Energy Engineering, 2020, 146(4):4020024-4020021.
[21]BOUABDALLAH S, GHERNAOUT B, BELLAOUAR A, et al. 3D forced convection in a box containing two cylindrical heat sources[J]. Advances in Modelling and Analysis B, 2020, 63(1-4):20-25.
[22]王怡, 第五徐涛, 黄艳秋. 双热源作用下侧吸罩流场及捕集效率特性研究[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4):568-573.
WANG Yi, DIWU Xutao, HUANG Yanqiu. Research on the flow field and capture efficiency characteristics of side suction hood influenced by the double heat sources[J]. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2016, 48(4): 568-573.
[23]SHRINIVAS A B, HUNT G R. Transient ventilation dynamics induced by heat sources of unequal strength[J]. Journal of Fluid Mechanics, 2014, 738:34-64.
[24]BOUABDALLAH S, GHERNAOUT B, BELLAOUAR A, et al. 3D forced convection in a box containing two cylindrical heat sources[J]. Advances in Modelling and Analysis B, 2020, 63(1/4):20-25.
[25]DOU X M, XIE D, WANG Z K, et al. Improved buoyancy-driver hybrid ventilation system for multiple-heat-source industrial buildings[J]. Case Studies in Thermal Engineering, 2021, 26:101059.1-101059.11.
[26]CAPORALE Alice, BOTTI Lucia, GALIZIA Francesco Gabriele, et al. Assessing the impact of environmental quality factors on the industrial performance of aged workers: A literature review[J]. Safety Science, 2022, 149:105680.1-105680.12.
[27]AWBI H B. 建筑通风[M]. 北京: 机械工业出版社, 2011.
AWBI H B. Building Ventilation[M]. Beijing: China Machine Press, 2011.
[28]LINDEN P F. Fluid mechanics of natural ventilation[J]. Annual Review of Fluid Mechanics, 1999, 31:201-238.
[29]GUO P H, WANG S, X B, et al. Reduced-scale experimental model and numerical investigations to buoyance-driven natural ventilation in a large space building[J]. Building and environment, 2018, 145:24-32.
[30]孟晓静. 高温热源工业建筑双辐射作用下室内热环境特性研究[D]. 西安: 西安建筑科技大学, 2016.
MENG Xiaojing. Influence of bidirectional radiation on the thermal environment in industrial buildings with high-temperature heat sources[D]. Xi'an: Xi'an Univ. of Arch. & Tech., 2016.
[31]WOUTERS P, SANTAMOURIS M. Building Ventilation[M]. New York: Rout ledge, 2006.
[32]CHRISTINE Walker, TAN G, GLICKSMAN Leon. Reduced-scale building model and numerical investigations to buoyancy-driven natural ventilation[J]. Energy and buildings, 2011, 43(9):2404-2413.
[33]蒲静. 建陶工业车间高温廊道通风降温方式研究[D]. 成都: 西南交通大学, 2021.
PU Jing. Research on the cooling methods of ventilation under high temperature corridors in ceramic industrial buildings[D]. Chengdu: Southwest Jiaotong University, 2021.
[34]YANG C Q, GAO T, LI A G, et al. Buoyancy-driven ventilation of an enclosure containing a convective area heat source[J]. International Journal of Thermal Sciences, 2021, 159:1-13
[35]ZHOU Y, WANG M Y, WANG M N, et al. Predictive accuracy of Boussinesq approximation in opposed mixed convection with a high-temperature heat source inside a building[J]. Building and Environment, 2018, 144:349-356.
[36]GAO R, FANG Z Y, LI A G, et al. A novel low-resistance tee of ventilation and air conditioning duct based on energy dissipation control[J]. Applied thermal Engineering: Design, Processes, Equipment, Economics, 2018, 132:790-800.
[37]WANG Y, CAO L, HUANG Y Q, et al. Lateral ventilation performance for removal of pulsating buoyant jet under the influence of high-temperature plume[J]. Indoor and Built Environment: Journal of the International Society of the Built Environment, 2020, 29(4):543-557.
[38]HUANG Y Q, WANG Y, REN X F, et al. Ventilation guidelines for controlling smoke, dust, droplets and waste heat: Four representative case studies in Chinese industrial buildings[J]. Energy and Buildings, 2016, 128:834-844.
[39]SHAFQAT HUSSAIN, PATRICK H. OOSTHUIZEN. Validation of numerical modeling of conditions in an atrium space with a hybrid ventilation system[J]. Building and Environment, 2012, 52:152-161.
[40]WU S Y, LI X, LAN X. Performance study of a novel multi-functional Trombe wall with air purification, photovoltaic, heating and ventilation[J]. Energy conversion & Management, 2020, 203:1-16.
[41]PAN D. An Experimental and Numerical Study on the Thermal Environment in an Air-conditioned Sleeping Space[D]. Hong Kong: Hong Kong Polytechnic University, 2012.
[42]DHIMAN M, SETHI V P, SINGH B, et al. CFD analysis of greenhouse heating using flue gas and hot water heat sink pipe networks[J]. Computers and Electronics in Agriculture, 2019, 163:1-7.
[43]SIEGEL R, HOWELL J R. Thermal radiation heat transfer[M]. Hemisphere Pub. Corp, 1981.
[44]ZEYTOUNIAN R K. Joseph Boussinesq and his approximation: a contemporary view[J]. Comptes Rendus Mécanique, 2003, 331:575-586.

备注/Memo

备注/Memo:
收稿日期:2021-08-23修改稿日期:2022-10-08
基金项目:“十三五”国家重点研发计划“绿色建筑及建筑工业化”重点专项(2018YFC0705300)
第一作者:蒲 静(1996—),女,硕士生,研究方向为工业建筑节能与通风.E-mail:pjjqianxi@163.com
通信作者:袁艳平(1973—),男,博士生导师,教授.E-mail:ypyuan@home.swjtu.edu.com
更新日期/Last Update: 2022-10-28