子查询返回的值不止一个。当子查询跟随在 =、!=、<、<=、>、>= 之后,或子查询用作表达式时,这种情况是不允许的。 大跨度钢管拱施工阶段仿真分析-西安建筑科技大学学报(自然科学版)

[1]邓 海,林燕珊,李海云,等.大跨度钢管拱施工阶段仿真分析[J].西安建筑科技大学学报(自然科学版),2023,55(01):78-84.[doi:10.15986/j.1006-7930.2023.01.010 ]
 DENG Hai,LIN Yanshan,LI Haiyun,et al.Simulation analysis of large span steel pipe arch in construction stage[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(01):78-84.[doi:10.15986/j.1006-7930.2023.01.010 ]
点击复制

大跨度钢管拱施工阶段仿真分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年01期
页码:
78-84
栏目:
出版日期:
2023-02-28

文章信息/Info

Title:
Simulation analysis of large span steel pipe arch in construction stage
文章编号:
1006-7930(2023)01-0078-07
作者:
邓 海1林燕珊2李海云1舒赣平3
(1.石家庄铁道大学 土木工程学院,河北 石家庄 050000; 2.浙江航冠工程设计有限公司,浙江 杭州 310000; 3.东南大学 土木工程学院,江苏 南京 210096)
Author(s):
DENG Hai1 LIN Yanshan2 LI Haiyun1 SHU Ganping3
(1.School of Civil Engineering,Shijiazhuang Railway University,Shijiazhuang 050000,China; 2.Zhejiang Hangguand Engieering Design Co. Ltd., Hangzhou 310000, China; 3.College of Civil Engineering, Southeast University, Nanjing 210096,China)
关键词:
连续梁拱组合桥 钢管拱 施工阶段 钢管拱整体纵移
Keywords:
continuous beam arch composite bridge Steel pipe arch construction stage overall longitudinal displacement of steel pipe arch
分类号:
TU391
DOI:
10.15986/j.1006-7930.2023.01.010
文献标志码:
A
摘要:
随着我国大跨度连续梁拱组合桥的不断增多,钢管拱施工质量对成桥阶段和运营阶段的结构有着重要影响,研究钢管拱在施工过程中的力学行为是非常有必要的.本文利用ABAQUS有限元分析软件创建钢管拱不同施工阶段,分析钢管拱在各个施工阶段中受力、变形等力学特征.计算结果表明:在钢管拱施工阶段,要重点关注钢管拱拱脚处应力状态,在钢管拱拼装完成后,支架位置处拱顶和拱底分别承受拉应力和压应力.钢管拱支架拆除后,在索力值1 074.4 kN作用下,整个钢管拱处于受压状态且拱底的受压程度大于拱顶.在钢管拱整体纵移过程中,钢管拱的应力在-12.49~11.10 MPa之间变化,由于拱脚处临时拉索的作用,在该位置处有最大压应力.在成桥施工阶段中,钢管拱的拱顶受压程度由拱中心向两侧减小,拱底受压程度由拱脚向拱中心减小,经过有限软件分析计算,钢管拱的应力、线形均满足规范要求.
Abstract:
With the increasing number of long-span continuous beam-arch composite bridges in China, the construction quality of steel pipe arch has an important influence on the structure of bridge completion stage and operation stage. It is necessary to study the mechanical behavior of steel pipe arch in the construction process. In this paper, ABAQUS finite element analysis software is used to create different construction stages of steel pipe arch, and analyze the mechanical characteristics such as stress and deformation of steel pipe arch in each construction stage. The calculation results show that the stress state at the foot of the steel pipe arch should be paid attention to in the construction stage of the steel pipe arch. After the completion of the steel pipe arch assembly, the arch top and the arch bottom at the bracket position bear tensile stress and compressive stress respectively. After the steel pipe arch support is removed, the entire steel pipe arch is under compression and the compression degree at the bottom of the arch is greater than that at the top of the arch under the action of the cable force value of 1 074.4 kN. During the overall longitudinal movement of the steel pipe arch, the stress of the steel pipe arch changes between -12.49 MPa and 11.10 MPa. Due to the effect of the temporary cable at the arch foot, there is the maximum compressive stress at this position. In the construction stage of the completed bridge, the compression degree of the vault of the steel pipe arch decreases from the arch center to both sides, and the compression degree of the arch bottom decreases from the arch foot to the arch center. Through the finite software analysis and calculation, the stress and linear of the steel pipe arch meet the requirements of the specification.

参考文献/References:

[1] 潘念,李承君. 连续梁钢管拱异位拼装整体顶推分析与施工[J]. 铁道建筑, 2011(5): 25-27.
PAN Nian, LI Chengjun. Integral jacking analysis and construction of ectopic assembling of continuous beam steel tube arch[J]. Railway Construction, 2011(5): 25-27.
[2]陈俊波,李延强,邢莉娜,等. 大跨度连续梁拱桥顶推施工力学行为分析[J]. 土木工程, 2018, 7(6): 969-977.
CHEN Junbo, LI Yanqiang, XING Lina, et al. Mechanical analysis of long-span continuous beam arch bridge under incremental launching construction[J]. Hans Journal of Civil Engineering, 2018, 7(6): 969-977.
[3]王引富.连续梁拱拱肋异位拼装顶拉就位关键技术[J].铁道建筑技术,2020(6):100-104.
WANG Yinfu. Key technology of ectopic assembling and jacking placement of continuous beam arch rib[J]. Railway Construction Technology, 2020(6): 100-104.
[4]赵琳强. 大跨铁路尼尔森体系连续梁拱组合桥施工阶段受力性能分析[D].石家庄:石家庄铁道大学, 2020.
ZHAO Linqiang. Mechanical performance analysis of continuous beam-arch composite bridges with Nelson system on large-span railways during construction[D]. Shijiazhuang: Shijiazhuang Railway University, 2020.
[5]周彦文,李书兵,唐剑. 大跨度钢管混凝土拱桥成拱线形控制技术研究[J]. 施工技术, 2020,49(2): 55-60.
ZHOU Yanwen, LI Shubing, TANG Jian. Research on the control technology of long-span CFST arch bridge forming arch alignment[J]. Construction Technology, 2020,49(2): 55-60.
[6]王强. 大跨度铁路连续梁拱组合桥梁大节段钢管拱肋整体同步提升拼装技术[J]. 中国铁路, 2020(6): 65-70.
WANG Qiang. Integral synchronous lifting and assembling technology of large-section steel pipe arch rib for continuous beam-arch composite bridges of long-span railway[J]. China Railway, 2020(6): 65-70.
[7]张志川. 有限元计算中预应力等效模拟方法研究[J]. 人民黄河, 2020, 42(S1): 122-125.
ZHANG Zhichuan. Research on the equivalent simulation method of prestress in finite element calculation[J]. People's Yellow River, 2020, 42(S1): 122-125.
[8]吴欣荣. 钢管混凝土拱施工阶段抗风性能与成桥阶段稳定性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
WU Xinrong. Research on the wind resistance performance of CFST arch during construction and the stability performance during bridge completion[D]. Harbin: Harbin Institute of Technology, 2015.
[9]曹政. 哑铃型截面钢管混凝土系杆拱桥施工优化及受力分析[D]. 长沙: 长沙理工大学, 2015.
CAO Zheng. Construction optimization and stress analysis of CFST tied arch bridge with dumbbell section[D]. Changsha: Changsha University of Science and Technology, 2015.
[10]王松林. 连续梁拱组合体系桥梁的有限元分析与施工监控[D].西安:长安大学, 2009.
WANG Songlin. Finite element analysis and construction monitoring of bridges with continuous beam-arch composite system[D]. Xi'an: Chang'an University, 2009.
[11]仇元淼. 高速铁路连续梁拱组合特大桥施工仿真及主梁监控分析[D]. 郑州:郑州大学, 2018.
QIU Yuanmiao. Construction simulation and main girder monitoring analysis of high-speed railway continuous beam-Arch composite bridge[D]. Zhengzhou: Zhengzhou University, 2018.
[12]杨高平. 铁路下承式钢管混凝土拱桥受力特性分析[D].兰州:兰州交通大学, 2014.
YANG Gaoping. Analysis of mechanical characteristics of railway under-loaded CFST arch bridges[D]. Lanzhou: Lanzhou Jiaotong University, 2014.
[13]陈海.合福铁路南淝河特大桥钢管拱异位拼装纵移就位施工技术[J].中国铁路,2015(3):71-76.
CHEN Hai. Construction Technology of Ectopic Assembling and Longitudinal Displacement of Steel Tube Arch of Nanfeihe Bridge on Hefei-Fuzhou Railway[J]. China Railway, 2015(3): 71-76.
[14]黎儒国,吴文明,尹玉林,等. 曲线桥大跨度钢管拱整体滑移技术研究[J]. 公路, 2010(12): 5-11.
LI Ruguo, WU Wenming, YIN Yulin, et al. Study on Integral Sliding Technology of Large Span Steel Tube Arch of Curved Bridge[J]. Highway, 2010(12): 5-11.

备注/Memo

备注/Memo:
收稿日期:2022-04-03修改稿日期:2022-08-06
基金项目:河北省重点研发项目(21375403D,20375410D); 河北省自然科学基金项目(E2020210017)
第一作者:邓 海(1975—),男,硕士,副教授,主要研究方向为桥梁和建筑结构力学性能分析和结构监控监测,E-mail:13933093219@126.com
通信作者:林燕珊(1996—),女,硕士,主要研究方向为大跨度钢管拱施工受力性能研究,E-mail:1531495342@qq.
更新日期/Last Update: 2023-02-20