[1]李丽霞,李鹏国,贾 琪,等.新型半埋入式地震超材料超低频带隙机理及性能研究[J].西安建筑科技大学学报(自然科学版),2023,55(01):103-110.[doi:10.15986/j.1006-7930.2023.01.013 ]
 LI Lixia,LI Pengguo,JIA Qi,et al.Study on mechanism and performance of ultra-low frequency band gap of new semi-embedded seismic metamaterials[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(01):103-110.[doi:10.15986/j.1006-7930.2023.01.013 ]
点击复制

新型半埋入式地震超材料超低频带隙机理及性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年01期
页码:
103-110
栏目:
出版日期:
2023-02-28

文章信息/Info

Title:
Study on mechanism and performance of ultra-low frequency band gap of new semi-embedded seismic metamaterials
文章编号:
1006-7930(2023)01-0103-08
作者:
李丽霞12李鹏国1贾 琪1李 玲1张锡成3
(1.西安建筑科技大学 机电工程学院,陕西 西安 710055; 2.西安建筑科技大学 力学技术研究院,陕西 西安 710055; 3.西安建筑科技大学 土木工程学院,陕西 西安 710055)
Author(s):
LI Lixia12 LI Pengguo1 JIA Qi1 LI Ling1 ZHANG Xicheng3
(1.School of Mechanical and Electrical Engineering,Xi'an Univ. of Arch. & Tech. Xi'an 710055,China; 2.Institute of Mechanics Technology, Xi'an Univ. of Arch. & Tech., Xi'an 710055,China; 3.Shool of Civil engineering, Xi'an Univ. of Arch. & Tech., Xi'an 710055,China)
关键词:
振动控制 超材料 带隙特性 局域共振
Keywords:
vibration control metamaterial band gap characteristics local resonance
分类号:
TU352
DOI:
10.15986/j.1006-7930.2023.01.013
文献标志码:
A
摘要:
针对破坏力极强的地震表面波中瑞利波的振动控制,提出一种新型半埋入式地震超材料屏障.相比于传统的地震超材料屏障,这种新型半埋入式超材料屏障将单胞的内外柱体分别单独半埋入土壤中,结构稳定性强且具有低频宽带隙特性.采用有限元法计算了新型半埋入方式下地震超材料屏障的带隙特性,并结合其振型分析了带隙的形成机理,当内外柱体分别单独半埋入时,振子和振动模态各不相同,打开了不同的低频带隙.进一步分析了埋入深度、连接体杨氏模量的变化对带隙机理的影响,其中,埋入深度是影响带隙的主要因素,随着埋入深度的增加,屏障稳定性增强,系统的主导刚度会发生改变,引起了局域共振模态的转变,从而拓宽带隙的宽度.最后,对有限周期模型屏障的振动传输特性进行了计算,并通过EI-Centro地震波对屏障进行了时程分析,加速度幅值衰减超过70%.结果表明:新型半埋入式地震超材料屏障对20 Hz以下的瑞利波具有良好的衰减作用,为地震超材料在减震隔震方面提供新的设计思路和方法.
Abstract:
A new type of semi-buried seismic metamaterial barrier is proposed for vibration control of Rayleigh waves in seismic surface waves with strong destructive force. Compared with the traditional seismic metamaterial barrier, this new semi-embedded metamaterial barrier semi-embedded the inner and outer columns of the unit cell into the soil separately, which has strong structural stability and low-frequency broadband gap characteristics. The finite element method is used to calculate the band gap characteristics of the seismic metamaterial barrier under the new semi-buried mode, and the formation mechanism of the band gap is analyzed combined with its vibration mode. When the internal and external columns are semi-buried separately, the oscillator and the vibration mode are different, and the low frequency band gap is opened. The influence of the embedded depth and Young's modulus of the connector on the band gap mechanism is further analyzed. The embedded depth is the main factor affecting the band gap. With the increase of the embedded depth, the stability of the barrier is enhanced, and the dominant stiffness of the system will change, resulting in the change of the local resonance mode, thus broadening the width of the band gap. Finally, the vibration transmission characteristics of the finite periodic model barrier are calculated, and the time history analysis of the barrier is carried out by EI-Centro seismic wave. The acceleration amplitude attenuation is more than 70%. The results show that the new semi-buried seismic metamaterial barrier has a good attenuation effect on Rayleigh wave below 20 Hz, which provides a new design idea and method for seismic metamaterials in damping and isolation.

参考文献/References:

[1] 崔杰,张为,张建国.Rayleigh波对浅地表地基震害的影响[J].华南地震,2008(2):10-18.
CUI Jie, ZHANG Wei, ZHANG Jianguo. The effect of Rayleigh wave on the seismic damage of shallow ground[J]. South China Earthquake, 2008(2):10-18.
[2]薛建阳,张崇新,韦亮陆,等.附设黏滞阻尼器超高层结构的减震效果分析[J].西安建筑科技大学学报(自然科学版), 2020,52(1):21-29.
XUE Jianyang, ZHANG Congxin, WEI Lianglu,et al. Analysis of seismic mitigation effect of super high-rise structures with viscous dampers[J].J. of Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2020,52(1):21-29.
[3]钱登辉, 史治宇. 局域共振型周期双层板简化模型带隙特性研究[J]. 振动、测试与诊断, 2019, 39(4):884-891.
QIAN Denghui, SHI Zhiyu. Research on band gap characteristics of simplified model of local resonance periodic double-layer plate[J]. Journal of Vibration. Measurement & Diagnosis, 2019, 39(4): 884-891.
[4]WANG G, WEN J, LIN Y, et al. Lumped-mass method for the study of band structure in two-dimensional phononic crystals[J]. Physical Review B, 2004, 69(18):184302.
[5]SHI Z, MENQ, YAN, et al. Three dimensional periodic foundations for base seismic isolation[J]. Smart Materials & Structures, 2015:075006.
[6]DU Qiujiao, ZENG Yi, HUANG Guoliang, et al. Elastic metamaterial - based seismic shield for both Lamb and surface waves[J]. AIP Advances, 2017, 7(7):075015.
[7]PU X, SHI Z. Broadband surface wave attenuation in periodic trench barriers[J]. Journal of Sound and Vibration,2020,468.
[8]MESEGUER F, CABALLERO D, HOLGADO M,et al. Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal[J]. Physical Review B, 1999, 59(19):12169-12172.
[9]BRULE S, JAVELAUD E H, ENOCH S, et al. Experiments on seismic metamaterials: molding surface waves[J]. Physical Review Letters, 2014, 112(13):1-5.
[10]PALERMO A, KRDEL S, MARZANI A, et al. Engineered metabarrier as shield from seismic surface waves[J]. Rep, 2016, 6:39356.
[11]MINIACI M, MINIACI M, KRUSHYNSKA A, et al. Large scale mechanical metamaterials as seismic shields[J]. New Journal of Physics, 2016, 18(8):083041.
[12]ACHAOUI Y, ANTONAKAKIS T, BRULE, S, et al. Clamped seismic metamaterials: Ultra-low broad frequency stop-bands[J]. New Journal of Physics, 2017, 19(6):063022.
[13]MANADAL P, SOMALA S N. Periodic pile-soil system as a barrier for seismic surface waves[J]. SN Applied Ences, 2020, 2(7):1184.
[14]DU Qiujiao, ZENG Yi, YANG X, et al. H-fractal seismic metamaterial with broadband low-frequency bandgaps[J]. Journal of Physics, D. Applied Physics: A Europhysics Journal, 2018, 51(10):105104.
[15]MUHAMMD, LIM C W, REDDY J N. Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium[J]. Engineering Structures, 2019, 188(JUN.1): 440-451.
[16]LIU Ze, QIN Kaiqiang, YU Guilan. Partially embedded gradient metabarrier: Broadband shielding from seismic rayleigh waves at ultralow frequencies[J]. Journal of Engineering Mechanics, 2020, 146(5):04020032.
[17]秦凯强, 刘泽, 于桂兰. 具有低频超宽衰减域的部分埋入式表面波屏障[J]. 地震工程与工程振动, 2020, 40(2):189-196.
QIN Kaiqiang,LIU Ze,YUGuilan. Partially buried surface wave barrier with low frequency and ultra-wide attenuation range[J]. Earthquake Engineering and Engineering Vibration, 2020, 40(2):189-196.
[18]刘岩钊. T形部分埋入周期/梯度表面波屏障隔震性能研究[D]. 北京:北京交通大学,2019.
LIU Yanzhao. Research on seismic isolation performance of T-shaped partially embedded periodic/gradient surface wave barrier[D]. Beijing: Beijing Jiaotong University, 2019
[19]OUDICH M, ASSOUAR M B. Surface acoustic wave band gaps in a diamond-based two-dimensional locally resonant phononic crystal for high frequency applications[J]. Journal of Applied Physics, 2012, 111(1):2022-R.
[20]温熙森,温激鸿,郁殿龙,等.声子晶体[M].北京:国防工业出版社,2009.
WEN Jiseng,WEN Jihong,YU Dianlong,et al. Phonon crystals[M]. Beijing: National Defense Industry Press, 2009.
[21]KHELIF A, ACHAOUI Y, BENCHABANE S, et al. Locally resonant surface acoustic wave band gaps in a two-dimensional phononic crystal of pillars on a surface[J]. Physical Review B Condensed Matter, 2010, 81(21):1601-1614.
[22]HUANG J, SHI Z, HUANG W. Multiple band gaps of phononic crystals with quasi-Sierpinski carpet unit cells[J]. Physica B Condensed Matter, 2017, 516:48-54.
[23]COLQUITT D J, COLOMBI A, CRASTER R V, et al. Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction[J]. Journal of the Mechanics & Physics of Solids, 2016, 99:379-393.
[24]Peer Ground Motion Database [EB]. http://peer. berkeley. edu/peer_ground_motion_database, 2018-03-10.

相似文献/References:

[1]袁 俊,王虎长,胡建民,等.1000kV 大跨越输电线路钢管塔风振响应及振动控制研究[J].西安建筑科技大学学报(自然科学版),2014,46(03):360.[doi:10.15986/j.1006-7930.2014.03.010]
 YUAN Jun,WANG Huchang,HU Jianmin,et al.Wind-induced dynamic response and vibration control of steel tubular tower in the 1000 kV large span crossing transmission line[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(01):360.[doi:10.15986/j.1006-7930.2014.03.010]

备注/Memo

备注/Memo:
收稿日期:2021-09-03修改稿日期:2023-01-18
基金项目:国家自然科学基金项目(51405368); 陕西省自然科学基金项目(2017JM5024)
第一作者:李丽霞(1979—),女,博士,副教授,现从事弹性超材料方面研究.E-mail:jieli_18@163.com
通信作者:张锡成(1984—),男,博士,讲师,从事工程结构抗震方面的研究.E-mail: xicheng-zhang@163.com
更新日期/Last Update: 2023-02-20