[1]陈 兴,王怀正,宋战平,等.山岭浅埋隧道进洞方案优化与洞口段稳定性分析[J].西安建筑科技大学学报(自然科学版),2023,55(03):359-367.[doi:10.15986/j.1006-7930.2023.03.006 ]
 CHEN Xing,WANG Huaizheng,SONG Zhanping,et al.Optimization of tunnel entry scheme and stability analysis of tunnel entrance section in mountain shallow-buried tunnel[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(03):359-367.[doi:10.15986/j.1006-7930.2023.03.006 ]
点击复制

山岭浅埋隧道进洞方案优化与洞口段稳定性分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年03期
页码:
359-367
栏目:
出版日期:
2023-06-28

文章信息/Info

Title:
Optimization of tunnel entry scheme and stability analysis of tunnel entrance section in mountain shallow-buried tunnel
文章编号:
1006-7930(2023)03-0359-09
作者:
陈 兴1王怀正23宋战平23曾 涛34田小旭23
(1.中交第二公路工程局有限公司,陕西 西安 710119; 2.西安建筑科技大学 隧道与地下结构工程研究所,陕西 西安 710055; 3.西安建筑科技大学 土木工程学院,陕西 西安 710055; 4.陕西省岩土与地下空间工程重点实验室,陕西 西安 710055)
Author(s):
CHEN Xing1 WANG Huaizheng23 SONG Zhanping23 SHI Wenyang34 TIAN Xiaoxu23
(1.China Communications Second Highway Engineering Bureau Co. Ltd, Xi'an 710119, China; 2.Institute of Tanhel and Undergrourd Structure Engineering of Xi'an Univ. of Arch. & Tech., Xi'an 710055, China; 3.School of Civil Engineering, Xi'an Univ. of Arch.& Tech., Xi'an 710055, China; 4.Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi'an 710055, China)
关键词:
隧道洞口 对比分析 数值模拟 稳定性
Keywords:
tunnel entrance comparative analysis numerical simulation stability
分类号:
TU 457
DOI:
10.15986/j.1006-7930.2023.03.006
文献标志码:
A
摘要:
若隧道洞口开挖时未采取合理的边坡加固措施,易导致边坡产生开裂、滑坡甚至崩塌等危害.以格鲁吉亚F3标5号公路隧道为背景,探讨了隧道洞口在微型桩墙支护和锚网喷支护两种加固方案下,隧道开挖引起的围岩位移场及应力场变化特征.利用有限元分析软件MIDAS-GTS建立三维模型,模拟隧道施工过程,并结合实际工程监测数据,对比研究了两种支护方案优劣性.结果表明:锚网喷支护方案围岩最大横纵向位移分别为3.55 mm和8.73 mm,最大拉应力为1.91 MPa; 衬砌沿隧道开挖方向的最大弯矩为33.71 kN·m,最大横向位移为3.55 mm.锚网喷支护方案较微型桩墙支护方案更为有效,显著提高了洞口边坡稳定性.因此,锚网喷支护方案在该地形中更具合理性.其结论对山岭地区公路隧道的建设提供一定的指导作用.
Abstract:
Unreasonable slope reinforcement measures during excavation of tunnel portals can easily lead to the damage of slope cracking, landslide or even collapse. In this paper, taking the No.5 highway tunnel in the F3 bid of Georgia as an example, the displacement and stress field changes of surrounding rock caused by tunnel excavation are discussed under the two reinforcement measures of micro pile-wall support and bolt-mesh-spurting supporting. The finite element analysis software MIDAS-GTS is used to establish a three-dimensional model to simulate the tunnel construction process, and combined with the actual project monitoring data, the advantages and disadvantages of the two support schemes are compared. The results show that the maximum transverse and longitudinal displacements of the surrounding rock are 3.55 mm and 8.73 mm respectively, and the maximum tensile stress is 1.91 MPa. The maximum bending moment of lining along the tunnel excavation direction is 33.71 kN·m, and the maximum transverse displacement is 3.55 mm. The anchor net spray support scheme is more effective than the micro pile wall support scheme, which significantly improves the stability of the portal slope. Therefore, the anchor net spray support scheme is more reasonable in this terrain. The conclusion can provide some guidance for the construction of highway tunnels in mountainous areas.

参考文献/References:

[1]丁祖德, 资昊, 计霞飞, 等. 考虑衬砌劣化的山岭隧道地震易损性分析[J]. 岩石力学与工程学报, 2020,39(3): 581-592.
DING Zude, ZI Hao, JI Xiafei et al. Seismic fragility analysis of mountain tunnels considering lining degradation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 581-592.
[2]张玉伟, 宋战平, 翁效林, 等. 大厚度黄土地层浸水湿陷对地铁隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2019, 38(5): 1030-1040.
ZHANG Yuwei, SONG Zhanping, WENG Xiaolin et al. Model test study on influence of the collapsibility of large thickness loess stratum on subway tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 1030-1040.
[3]宋战平, 张强, 赵克明, 等. 基于现场监测及数值分析的隧道双导洞超前施工优化研究[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(5): 654-661.
SONG Zhanping, ZHANG Qiang, ZHAO Keming et al. Optimization study of advanced double drift tunnel construction base on on-site monitoring and numerical analysis[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2018, 50(5): 654-661.
[4]LI Ziyuan, WANG Liqiong, FENG Bo, et al. Comprehensive collapse investigation and treatment: an engineering case from Qingdao expressway tunnel[J]. Journal of Cleaner Production, 2020, 270: 121879.
[5]周潇朗, 张常亮, 乔朋腾. 变质岩区隧道开挖作用下围岩应力场变化及其稳定性分析[J]. 地球科学与环境学报, 2018, 40(4): 497-504.
ZHOU Xiaolang, ZHANG Changliang, QIAO Pengteng. Stress field variation and stability analysis of surrounding rocks in excavation of metamorpgic rock tunnel[J]. Journal of Earth Sciences and Environment, 2018, 40(4): 497-504.
[6]李辉, 田小旭, 宋战平, 等. 基于谢家杰公式的浅埋隧道开挖进尺计算方法研究[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(5): 662-667.
LI Hui, TIAN Xiaoxu, SONG Zhanping, et al. Study on calculatioin method of digging length for shallow tunnel based on Xie Jiajie's surrounding rock pressure formula[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2018, 50(5): 662-667.
[7]李东顺. 黄土大断面隧道高陡边坡进出洞施工方案比选及临建布置[J]. 现代隧道技术, 2021, 58(2): 8.
LI Dongshun. Comparison of construction schemes and layout of temporary facilities for the entrance/exit section of a large-section loess tunnel on high and steep slope[J]. Modern Tunnelling Technology, 2021, 58(2): 220-227.
[8]XU Shuoshuo, LEI Hao, LI Chong, et al. Model test on mechanical characteristics of shallow tunnel excavation failure in gully topography[J]. Engineering Failure Analysis, 2021, 119: 104978.
[9]卢光兆, 周博, 徐锋, 等. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报(工学版), 2021, 51(4): 61-70.
LU Guangzhao,ZHOU Bo,XU Feng, et al. Stability analysis and construction mechanics of shallow buried bias tunnel openings[J]. Journal of Shandong University.( Engineering Science), 2021, 51(4): 61-70.
[10]崔光耀, 蒋梦新, 王明胜. 高烈度地震区隧道洞口段纤维混凝土衬砌抗震效果分析[J]. 现代隧道技术,2022,59(1):207-213.
CUI Guangyao, JIANG Mengxin, WANG Mingsheng. Analysis of anti-seismic effect of fiber reinforced concrete lining at tunnel entrance in high seismic intensity area[J]. Modern Tunnelling Technology, 2022,59(1):207-213.
[11]YU Yuan, TANG Liang, LING Xianzhang, et al. Investigation of the soillining interaction at a tunnel entrance during freeze-thaw cycling: Model testing and semi-empirical modeling[J]. Tunnelling and Underground Space Technology, 2021, 115: 104028.
[12]孙文, 梁庆国, 刘青霞, 等. 强震作用下黄土隧道洞口段地震动放大效应研究[J]. 地震工程学报, 2021, 43(4): 935-943.
SUN Wen, LIANG Qingguo, LIU Qingxia, et al. Amplification effect of the portal section of loess tunnels under strong earthquake[J]China Earthquake Engineering Journal, 2021, 43(4): 935-943.
[13]HU Zhinan, SHEN Jin, WANG Yunfei, et al. Cracking characteristics and mechanism of entrance section in asymmetrically-load tunnel with bedded rock mass: A case study of a highway tunnel in southwest China[J]. Engineering Failure Analysis, 2021, 122: 105221.
[14]TIAN Xiaoxu, SONG Zhanping, ZHANG Yuwei. Monitoring and reinforcement of landslide induced by tunnel excavation: a case study from Xiamaixi tunnel[J]. Tunnelling and Underground Space Technology, 2021, 110: 1-14.
[15]FAN Shengyuan, SONG Zhanping, ZHANG Yyuwei, et al. Case study of the effect of rainfall infiltration on a tunnel underlying the roadbed slope with weak inter-laye[J]. KSCE Journal of Civil Engineering, 2020, 24(5): 1607-1619.
[16]刘运泽, 洪勇, 李柏霄. 隧道洞口古滑坡堆积体边坡综合加固治理技术研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(3): 351-358.
LIU Yunze, HONG Yong, LI Boxiao. Study on the comprehensive reinforcement and control technology of the ancient landslide accumulation body slope of tunnel[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(3): 351-358.
[17]陈舞, 岳克栋, 王浩, 等. 基于突变理论的隧道洞口浅埋段软弱围岩失稳分析方法[J]. 中国铁道科学, 2021, 42(4): 69-77.
CHEN Wu, YUE Kedong, WANG Hao, et al. Instability analysis method of weak surrounding rock in shallow-buried section of tunnel portal based on catastrophe theory[J]. China Railway Science, 2021,42(4):69-77.
[18]谢伟东. 降雨入渗对隧道下穿路基段边坡变形稳定性的影响分析[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(4):470-477.
XIE Weidong. Inpact analysis of rainfall infiltration on the deformation mechanism and stability of roadbed slope[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(4): 470-477.
[19]LI Pan, LIU Cheng, ZHANG Yongxing, et al. Construction practice of landslide during tunneling in hilly topography[J]. Engineering Failure Analysis, 2019, 104: 1234-1241.
[20]彭园, 钱江, 翟全磊, 等. Midas GTS三维数值分析在隧道偏压浅埋洞口段的应用及技术实践[J]. 公路, 2016, 61(6): 268-274.
PENG Yuan, QIAN Jiang, ZHAI Quanlei, et al. Application and technical practice of Midas GTS three-dimensional numerical analysis in shallow buried tunnel openings with bias pressure[J]. Highway, 2016, 61(6): 268-274.
[21]房倩, 粟威, 张顶立, 等. 基于现场监测数据的隧道围岩变形特性研究[J]. 岩石力学与工程学报, 2016,35(9): 1884-1897.
FANG Qian, SU Wei, ZHANG Dingli, et al. Tunnel deformation characteristics based on on-site monitoring data[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1884-1897.

备注/Memo

备注/Memo:
收稿日期:2021-08-24修回日期:2023-01-18
基金项目:陕西省创新能力支撑计划-创新团队基金资助(2020TD-005); 陕西省自然科学基金资助(2021JM-373)
第一作者:陈 兴(1974—),男,高级工程师,主要从事土木工程施工技术管理工作.E-mail:437086155@qq.com
通信作者:王怀正(1997—),男,硕士研究生,主要研究隧道施工技术.E-mail:wanghzzy@163.com
更新日期/Last Update: 2023-06-28