[1]刘继兵,刘 韬.可更换钢连梁超低周疲劳性能多尺度数值研究[J].西安建筑科技大学学报(自然科学版),2023,55(03):385-393.[doi:10.15986/j.1006-7930.2023.03.009 ]
 LIU Jibing,LIU Tao.Multi-scale numerical study on ultra-low-cycle fatigue of replaceable steel coupling beams[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(03):385-393.[doi:10.15986/j.1006-7930.2023.03.009 ]
点击复制

可更换钢连梁超低周疲劳性能多尺度数值研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年03期
页码:
385-393
栏目:
出版日期:
2023-06-28

文章信息/Info

Title:
Multi-scale numerical study on ultra-low-cycle fatigue of replaceable steel coupling beams
文章编号:
1006-7930(2023)03-0385-09
作者:
刘继兵1刘 韬23
(1.榆林市建筑业综合服务中心(建设工程质量安全监督中心站),陕西 榆林 719000; 2.同济大学 土木工程学院,上海 200092; 3.中国地震局工程力学研究所 地震工程与工程振动重点实验室,黑龙江 哈尔滨 150080)
Author(s):
LIU Jibing1 LIU Tao23
(1.Yulin Construction Comprehensive Service(Project Quality and safety Supervision Station for Construction), Shaanxi Yulin 719000, China; 2.College of Civil Engineering, Tongji University, Shanghai 200092, China; 3.Key Laboratory of Earthquake Engineering and Engineering Vibration,Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China)
关键词:
超低周疲劳 可更换钢连梁 联肢墙 多尺度模拟 耦合比 延性断裂 累积塑性耗能
Keywords:
ultra-low-cycle fatigue replaceable steel coupling beam coupled wall multi-scale simulation coupling ratio ductile fracture accumulated plastic energy dissipation
分类号:
TU973
DOI:
10.15986/j.1006-7930.2023.03.009
文献标志码:
A
摘要:
为研究可更换钢连梁的超低周疲劳性能,提出一种多尺度模拟方法.在细观尺度上采用考虑循环塑性模型和超低周疲劳断裂模型的钢连梁精细化有限元模型,在宏观尺度上采用通过标定力-位移曲线的钢连梁简化模型,根据联肢墙整体模拟结果,建立精细化和简化模型的位移时程等效,实现其超低周疲劳性能高效分析.选取混合联肢墙试验作为示例,详细介绍方法流程; 采用该方法对不同耦合比的联肢墙算例进行可更换钢连梁的超低周疲劳性能分析.研究结果表明:示例分析结果与试验结果吻合较好,说明该方法是合理的; 在相同顶点位移下,联肢墙的耦合比越小,其连梁可更换消能梁段的变形越大,起裂时刻越早,断裂损伤系数也越大; 消能梁段翼缘焊缝中心处易发生断裂; 各层钢连梁设计相同时,等幅加载下连梁间起裂圈数的比值可通过同一时刻对应连梁累积塑性耗能的比值进行计算,不同楼层钢连梁起裂时的累积塑性耗能较为接近.
Abstract:
A multi-scale simulation method was proposed for the study on ultra-low-cycle fatigue(ULCF)of replaceable steel coupling beams(SCBs). A refined finite element(FE)model of SCB, into which both cyclic plastic model and ULCF model at mesoscopic scale were implemented, was utilized. A simplified model of SCB at macroscopic scale was adopted whose parameters were calibrated by force-displacement relationship. The displacement history of the refined FE model of SCB is equivalent to that of the corresponding simplified model, which was determined via analysis results of whole coupled wall model; and then ULCF life could be investigated efficiently. The analysis procedure of the proposed simulation method(PSM)was presented in detail via selecting a coupled wall test as a sample. The ULCF analysis was conducted for the typical coupled walls with different coupling ratio using the PSM. Results show that the PSM is reasonable, which was validated by the comparison of analysis of the sample with experimental results. Under the same top lateral deflection, if the coupling ratio is smaller, the deformation of shear links will be larger, time of crack initiation earlier, and damage index of fracture greater. Creaks of shear links appear in the center of welds at flange firstly. When design of all replaceable SCBs is the same, under displacement loading with constant amplitudes, the ratio of loading numbers of creak initiation between two SCBs can be calculated approximately by the ratio of accumulated plastic energy dissipations(APEDs)of the corresponding two SCBs at the same time. As creak initiation of SCBs at different floors occurs, APEDs of the SCBs are almost identical.

参考文献/References:

[1]王威,任英子,苏三庆,等.高层剪力墙抗震理论发展—从高强高刚到震后可恢复设计[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(4): 493-502.
WANG Wei, REN Yingzi, SU Sanqing, et al. Seismic theory development of shear walls in tall buildings -from high strength and high rigidity to resilient design after earthquake[J]. J of Xi'an Univ. of Arch.& Tech.(Natural Science Edition), 2019, 51(4): 493-502.
[2]方鄂华.连系梁对双肢剪力墙弹塑性性能的影响[J]. 工程抗震,1985(4): 5-10.
FANG Ehua. Impact of coupling beams on elastic-plastic behavior of coupled shear walls[J]. Earthquake Resistant Engineering and Retrofitting, 1985(4): 5-10.
[3]刘韬, 张令心, 陈永盛. 双肢剪力墙耦合比计算方法及其应用研究[J]. 哈尔滨工业大学学报, 2021,53(10): 41-51.
LIU Tao, ZHANG Lingxin, CHEN Yongsheng. Study on both calculation and application of the coupling ratio for coupled shear walls[J]. Journal of Harbin Institute of Technology, 2021,53(10): 41-51.
[4]刘继兵. 不同耦合比的钢筋混凝土联肢剪力墙抗震性能分析[J]. 建筑结构,2021,51(S2):880-884.
LIU Jibing. Seismic behavior of coupled shear walls with different coupling ratios[J]. Building Structure, 2021,51(S2): 880-884.
[5]王亚勇.汶川地震建筑震害启示——抗震概念设计[J]. 建筑结构学报, 2008(4): 20-25.
WANG Yayong. Lessons learnt from building damages in the Wenchuan earthquake: Seismic concepted design of buildings[J]. Journal of Building Structures, 2008(4): 20-25.
[6]WENG Y K, PAMPANIN S. The seismic performance of RC buildings in the 22 February 2011 Christchurch earthquake[J]. Structural Concrete, 2011, 12(4): 223-233.
[7]吕西林,周颖,陈聪.可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4): 130-139.
LU Xilin, ZHOU Ying, CHEN Cong. Research progress on innovative earthquake-resilient structural systems[J]. Earthquake Engineering and Engineering Vibration, 2014, 34(4): 130-139.
[8]FORTNEY P J, SHAHROOZ B M, RASSATI G A. Large-scale testing of a replaceable “Fuse” steel coupling beam[J]. Journal of Structural Engineering, ASCE, 2007, 133(12): 1801-1807.
[9]吕西林,陈云,蒋欢军.新型可更换连梁研究进展[J]. 地震工程与工程振动, 2013, 33(1): 8-15.
LU Xilin, CHEN Yun, JIANG Huanjun. Research progress in replaceable coupling beams[J]. Earthquake Engineering and Engineering Vibration, 2013, 33(1): 8-15.
[10]JI Xiaodong, HUTT C M. Seismic design and application of hybrid coupled walls with replaceable steel coupling beams in high-rise buildings[J]. The Structural Design of Tall and Special Buildings, 2020, 29(8): 1-17.
[11]LÜ Xilin, CHEN Yun, JIANG Huanjun. Earthquake resilience of reinforced concrete structural walls with replaceable “Fuses”[J]. Journal of Earthquake Engineering, 2018, 22(5): 801-825.
[12]LU Xilin, CHEN Cong, CHEN Yun, SHAN Jiazeng. Application of replaceable coupling beams to RC structures[J]. The Structural Design of Tall and Special Buildings, 2016, 25(17): 947-966.
[13]纪晓东,马琦峰,王彦栋,等.钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6): 1-11.
JI Xiaodong, MA Qifeng, WANG Yandong, et al. Cyclic tests of replaceable shear links in steel coupling beams[J]. Journal of Building Structures, 2014, 35(6): 1-11.
[14]叶垚, 王化杰, 武启剑.可更换连梁的可更换性研究[J]. 建筑结构学报, 2021,42(S1): 395-403.
YE Yao, WANG Huajie, WU Qijian. Study on replaceability of replaceable coupling beams[J]. Journal of Building Structures, 2021, 42(S1): 395-403.
[15]JI Xiaodong, WANG Yandong, MA Qifeng, et al. Cyclic behavior of replaceable steel coupling beams[J]. Journal of Structural Engineering, ASCE, 2016, 104(3):1-8.
[16]李书蓉,蒋欢军.带可更换连梁的新型联肢剪力墙的设计与分析[J]. 同济大学学报(自然科学版), 2018, 46(7): 868-876.
LI Shurong, JIANG Huanjun. Design and analysis of reinforced concrete coupled shear wall with replaceable coupling beam[J]. Journal of Tongji University(Natural Science), 2018, 46(7): 868-876.
[17]JI Xiaodong, LIU Dan, HUTT C M. Seismic performance evaluation of a high-rise building with novel hybrid coupled walls[J]. Engineering Structures, 2018, 169(15): 216-225.
[18]MAHIN S A. Lessons from damage to steel buildings during the Northridge earthquake[J]. Engineering Structures, 1998, 20(4/6): 261-270.
[19]AIJ. Fracture in steel structures during a severe earthquake[R]. Tokyo: Architectural Institute of Japan, 1995.
[20]XIANG Ping, QING Zifei, JIA Liangjiu, et al. Damage evaluation and ultra-low-cycle fatigue analysis of high-rise steel frame with mesoscopic fracture models[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 1-16.
[21]MHM A, SMZA B. Evaluating ultra low cycle fatigue based on ductile fracture model in double core BRBs[J]. Engineering Structures, 2020, 223(15): 1-17.
[22]RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids,1969, 17(3), 201-217.
[23]CHENG Minyuan, FIKRI R, CHEN Chengcheng. Experimental study of reinforced concrete and hybrid coupled shear wall systems[J]. Engineering Structures, 2015, 82: 214.
[24]JIA Liangjiu, KUWAMURA H. Prediction of cyclic behaviors of mild steel at large plastic strain using coupon test results[J]. Journal of Structural Engineering, ASCE, 2014, 140(2): 04013056.
[25]廖芳芳,王睿智,李文超,等.Q460钢基于微观机制的延性断裂判据研究[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4): 535-543.
LIAO Fangfang, WANG Ruizhi, LI Wenchao, et al. Study on micro mechanism-based ductile fracture criteria for Q460 steel[J]. J. of Xi'an Univ. of Arch.& Tech.(Natural Science Edition), 2016, 48(4): 535-543.
[26]GU Tianyu, JIA Liangjiu, CHEN Bo, et al. Unified full-range plasticity till fracture of meta steel and structural steels[J]. Engineering Fracture Mechanics, 2021, 253(10):1-20.
[27]陈永盛,刘韬,张令心.塑性阶段联肢墙墙肢基底内力变化规律及其简化计算方法[J]. 地震工程与工程振动,2021,41(6):19-32.
CHEN Yongsheng, LIU Tao, ZHANG Lingxin. Variation and simplified calculation of base forces in wall piers for coupled walls during plastic stage[J]. Earthquake Engineering and Engineering Vibration, 2021,41(6):19-32.

备注/Memo

备注/Memo:
收稿日期:2022-04-28修回日期:2022-07-19
基金项目:黑龙江省科学基金基金(LH2022E123); 中国地震工程与工程振动重点实验室开放专项基金项目(2021D04)
第一作者:刘继兵(1969—),男,学士,高级工程师,主要研究结构抗震设计和加固、工程质量安全监督. E-mail:jibing_liuyl@163.com
通信作者:刘 韬(1993—),男,博士生,主要研究高层建筑结构抗震和结构钢延性断裂. E-mail:tao_liu@tongji.edu.cn
更新日期/Last Update: 2023-06-28