子查询返回的值不止一个。当子查询跟随在 =、!=、<、<=、>、>= 之后,或子查询用作表达式时,这种情况是不允许的。 分体式空调建筑行为调节对热舒适的影响研究-西安建筑科技大学学报(自然科学版)

[1]孙 震,杨 柳,王敏丽,等.分体式空调建筑行为调节对热舒适的影响研究[J].西安建筑科技大学学报(自然科学版),2023,55(03):442-452.[doi:10.15986/j.1006-7930.2023.03.016 ]
 SUN Zhen,YANG Liu,WANG Minli,et al.Influence of behavioral adjustment on thermal comfort in split air-conditioned buildings[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(03):442-452.[doi:10.15986/j.1006-7930.2023.03.016 ]
点击复制

分体式空调建筑行为调节对热舒适的影响研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年03期
页码:
442-452
栏目:
出版日期:
2023-06-28

文章信息/Info

Title:
Influence of behavioral adjustment on thermal comfort in split air-conditioned buildings
文章编号:
1006-7930(2023)03-0442-11
作者:
孙 震1杨 柳23王敏丽1郭利强4闫海燕12
(1.河南理工大学 建筑与艺术设计学院,河南 焦作 454000; 2.绿色建筑国家重点实验室(XAUAT),陕西 西安 710055; 3.西安建筑科技大学 建筑学院,陕西 西安 710055; 4.中国建筑第七工程局有限公司,河南 郑州 450048)
Author(s):
SUN Zhen1 YANG Liu23 WANG Minli1 GUO Liqiang4 YAN Haiyan12
(1.School of Architectural and Artistic Design, Henan Polytechnic University, Henan Jiaozuo 454000, China; 2.State Key Laboratory of Green Building(XAUAT), Xi'an 710055, China;
关键词:
分体式空调建筑 行为调节 空调使用行为 室内外热经历 热舒适
Keywords:
split air conditioned building behavioral adjustment air conditioning behavior indoor and outdoor thermal history thermal comfort
分类号:
TU119+.5
DOI:
10.15986/j.1006-7930.2023.03.016
文献标志码:
A
摘要:
为了解分体式空调建筑中行为调节对热舒适的影响,以焦作住宅为调研对象,采用热环境参数测试和问卷调查相结合的方法,共收集509份数据.结果表明:室内平均操作温度28.6 ℃,居民的中性温度为27.7 ℃,均高出GB 50736标准规定的夏季一级舒适度范围(24~26 ℃).然而,由于分体式空调住宅提供了丰富而有效的行为调节机会以及由此产生的较强感知控制,仍有超过80%的居民对自己的住宅热环境感到满意.服装热阻与室内热经历强度的负相关关系表明居民可以通过服装调节行为来有效地适应当前的热环境.居民偏爱开启门窗这种被动式调节措施,当室外热经历强度在30 ℃以下,较高的门窗开启率可以有效改善自然通风模式下居民的热感觉.然而,当室外热经历强度超过30 ℃时,居民会选择关闭门窗,使用空调来改善自身热舒适.分体式空调住宅中居民使用空调具有个性化、差异化和多样化的时空特征,同时更倾向于低碳的空调使用模式.随着室外热经历的强度和作用时间的增加,居民适应了较高的室外温度,空调开启/设定温度也在提高.然而,室外热经历对空调开启/设定温度造成显著影响的所需时间并不一致.以上研究可为分体式空调住宅建筑室内热环境设计和节能调控提供理论依据.
Abstract:
In order to understand the influence of behavioral adjustment on thermal comfort in split air-conditioned buildings, a total of 509 data were collected by combining thermal environment parameter tests and questionnaire surveys with the residential building in Jiaozuo as the research object. The results showed that the mean indoor operative temperature was 28.6 ℃, and the neutral temperature of residents was 27.7 ℃, both of which were higher than the temperature limit value of category I(24~26 ℃)in summer stipulated in the standard GB 50736. However, more than 80% of residents were still satisfied with the residential thermal environment due to the rich and effective behavioral adjustment opportunities provided by split air-conditioned residential buildings and the resulting strong perceived control. The negative correlation between clothing insulation and indoor thermal history intensity indicated that residents could effectively adapt to the current thermal environment through clothing adjustment behavior. Residents preferred passive adjustment measures such as opening doors and windows. When the outdoor thermal history intensity was below 30 ℃, the higher opening rate of doors and windows can improve residents' thermal sensation in the natural ventilation mode. However, when the outdoor thermal history intensity exceeded 30 ℃, residents would choose to close doors and windows and use air conditioners to improve their thermal comfort. The use of air conditioners by residents in split air-conditioned residential buildings had obvious characteristics of individuation, differentiation and diversification, and at the same time, they were more inclined to low-carbon air conditioners usage mode. With the increase of outdoor thermal history intensity and action time, residents gradually adapted to higher outdoor temperatures, and air conditioners' start/set temperatures also rose. The time required for outdoor thermal history to significantly influence air conditioners' start/set temperatures were inconsistent. These studies provide the theoretical basis for indoor thermal environment design and energy-saving regulation of split air-conditioned residential buildings.

参考文献/References:

[1]中国建筑节能协会, 2020年中国建筑能耗研究报告[R/OL]. 2020https://www.cabee.org/site/content/24021.html.
China Association of Building Energy Efficiency, China Building Energy Consumption Annual Report 2020[R/OL]. 2020https://www.cabee.org/site/content/24021.html.
[2]中华人民共和国住房和城乡建设部. 民用建筑室内热湿环境评价标准: GB/T 50785—2012[S]. 北京: 中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Evaluation standard for indoor thermal environment in civil buildings: GB/T 50785—2012[S]. Beijing: China Architecture and Building Press, 2012.
[3]FANGER P O. Thermal comfort: Analysis and applications in environmental engineering[M]. Copenhagen: Danish Technical Press, 1970.
[4]中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范: GB 50736—2012[S]. 北京: 中国建筑工业出版社, 2012.
China Academy of Building Research. Design code for heating ventilation and air conditioning of civil buildings: GB 50736—2012[S]. Beijing: China Architecture and Building Press, 2012.
[5]LIU H, WU Y X, LI B Z, et al. Seasonal variation of thermal sensations in residential buildings in the hot summer and cold Winter zone of China[J]. Energy and Buildings, 2017, 140: 9-18.
[6]闫海燕, 董梦如, 杨璐璐, 等. 夏季空调混合运行模式建筑室内热环境和人体热舒适研究[J]. 建筑科学, 2021, 37(8): 41-49.
YAN Haiyan, DONG Mengru, YANG Lulu, et al. Study on indoor thermal environment and human thermal comfort of air-conditioned buildings with mixed mode operation in summer[J]. Building Science, 2021, 37(8): 41-49.
[7]刘艳峰, 刘露露, 王登甲, 等. 热湿地区居住建筑自然通风与空调耦合运行模式研究[J]. 暖通空调, 2018, 48(10): 65-70.
LIU Yanfeng, LIU Lulu WANG Dengjia, et al. Coupling operation mode of natural ventilation and air conditioning for residential buildings in hot-humid area[J]. Heating Ventilating and Air Conditioning, 2018, 48(10): 65-70.
[8]SONG Y R, SUN Y X, LUO S G, et al. Residential adaptive comfort in a humid continental climate-Tianjin China[J]. Energy and Buildings, 2018, 170: 115-121.
[9]D'OCA S, FABI V, CORGNATI S P, et al. Effect of thermostat and window opening occupant behavior models on energy use in homes[J]. Building Simulation, 2014, 7(6): 683-694.
[10]IWASHITA G, AKASAKA H. The effects of human behavior on natural ventilation rate and indoor air environment in summer: A field study in southern Japan[J]. Energy and Buildings, 1997, 25(3): 195-205.
[11]NICOL J F, HUMPHREYS M A. A stochastic approach to thermal comfort-occupant behavior and energy use in buildings[J]. ASHRAE Transactions, 2004, 110: 554-568.
[12]RAJAN K, RIJAL H B, SHUKUYA M, et al. An in-situ study on occupants' behaviors for adaptive thermal comfort in a Japanese HEMS condominium[J]. Journal of Building Engineering, 2018, 19: 402-411.
[13]LAI D Y, JIA S S, YUE Q, et al. Window-opening behavior in Chinese residential buildings across different climate zones[J]. Building and Environment, 2018, 142: 234-243.
[14]CHEN S Q, WANG X Z, LUN I, et al. Effect of inhabitant behavioral responses on adaptive thermal comfort under hot summer and cold winter climate in China[J]. Building and Environment, 2020, 168: 106492.
[15]MORGAN C, DEAR R D. Weather, clothing and thermal adaptation to indoor climate[J]. Climate research, 2003, 24(3): 267-284.
[16]Global ABC, IEA, UNEP. Global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and construction sector[R]. Newyork: United Nations Environment Programme, 2019.
[17]中国建筑科学研究院. 民用建筑热工设计规范:GB 50176—2016[S]. 北京: 中国建筑工业出版社, 2016.
China Academy of Building Research. Code for thermal design of civil building:GB 50176—2016[S]. Beijing: China Architecture and Building Press, 2016.
[18]ASHRAE, Thermal environmental conditions for human occupancy, ASHRAE standard 55—2020[S]. Atlanta, Georgia: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2020.
[19]WYON D P,张宇峰.室内环境研究的方法论[J]. 暖通空调,2006,36(5):51-54.
WYON D P, ZHANG Yufeng. Methodology for indoor environmental research[J]. Heating Ventilating and Air Conditioning, 2006, 36(5): 51-54.
[20]I.ISO. Ergonomsics of the thermal environment, instruments for measuring physical quantities 7726-1998[S].Geneva: International Standard Organization, 2001.
[21]刘斌, 牛润萍, 魏绅. 北京地区夏季空调使用行为测试分析[J]. 建筑学报, 2017(3): 114-117.
LIU Bin, NIU Runping, WEI Shen. An analysis of the use of air conditioners in summer in Beijing[J]. Architectural Journal, 2017(3): 114-117.
[22]JACK B. Indoor thermal comfort: The behavioral component[J]. Sustainability, 2013, 5(4): 1680-1699.
[23]ZHANG Z J, ZHANG Y F, JIN L. Thermal comfort in interior and semi-open spaces of rural folk houses in hot-humid areas[J]. Building and Environment, 2018, 128(15): 336-347.
[24]RIJAL H B, HUMPHREYS M A, NICOL J F. Adaptive thermal comfort in Japanese houses during the summer season: Behavioral adaptation and the effect of humidity[J]. Buildings, 2015, 5(3): 1037-1054.
[25]NIKOLOPOULOU M, STEEMERS K. Thermal comfort and psychological adaptation as a guide for designing urban spaces[J]. Energy and Buildings, 2003, 35(1): 95-101.
[26]LUO M H, CAO B, Zhou X, et al. Can personal control influence human thermal comfort? A field study in residential buildings in China in Winter[J]. Energy and Buildings, 2014, 72: 411-418.
[27]LUO M H, CAO B, JI W J, et al. The underlying linkage between personal control and thermal comfort: Psychological or physical effects?[J]. Energy and Buildings, 2016, 111: 56-63.
[28]BOERSTRA A A, LOOMANS M M, HENSEN J J. Percieved control over indoor climate and its impact on Dutch office workers[C]//Proceedings Healthy Buildings, Einhoven: M.G.L.C.Loomans,2015.
[29]DEAR R D, BRAGER G. Developing an adaptive model of thermal comfort and preference[J]. Ashrae Trans, 1998, 104(1): 73-81(9).
[30]HUMPHREYS M A, NICOL J F. Understanding the adaptive approach to thermal comfort[J]. Ashrae Trans B, 1998, 104(1): 991-1004.

备注/Memo

备注/Memo:
收稿日期:2022-05-04修回日期:2023-04-22
基金项目:“十三五”国家重点研发计划基金项目(2018YFC0704500); 河南省科技厅重点研发与推广专项(科技攻关)基金项目(46202102310566; 222102320310); 西部绿色建筑国家重点实验室开放基金(重点)(LSKF202101); 河南省高校基本科研业务费专项资金(NSFRF200306)
第一作者:孙 震(1997—),男,硕士生,主要从事人体热舒适研究.E-mail:937514598@qq.com
通信作者:闫海燕(1976—),女,博士,教授,硕士生导师,主要从事绿色建筑与节能、人体热舒适等方面研究.E-mail:yhy@hpu.edu.cn
更新日期/Last Update: 2023-06-28