[1]高晨啸,陈向荣,王欣淼,等.短屈服段屈曲约束支撑的滞回性能研究[J].西安建筑科技大学学报(自然科学版),2023,55(06):819-826.[doi:10.15986/j.1006-7930.2023.06.004]
 GAO Chenxiao,CHEN Xiangrong,WANG Xinmiao,et al.Analysis of hysteresis behavior of short-yielding-section buckling-restrained brace[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2023,55(06):819-826.[doi:10.15986/j.1006-7930.2023.06.004]
点击复制

短屈服段屈曲约束支撑的滞回性能研究()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
55
期数:
2023年06期
页码:
819-826
栏目:
出版日期:
2023-12-28

文章信息/Info

Title:
Analysis of hysteresis behavior of short-yielding-section buckling-restrained brace
文章编号:
1006-7930(2023)06-0819-08
作者:
高晨啸1陈向荣12王欣淼1李刚3
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.西安建筑科技大学 结构工程与抗震教育部重点实验室,陕西 西安 710055;3.西安建筑科技大学 设计研究总院,陕西 西安 710055)
Author(s):
GAO Chenxiao1 CHEN Xiangrong12 WANG Xinmiao1 LI Gang3
(1.School of Civil Engineering, Xi′an Univ. of Arch.& Tech., Xi′an 710055,China; 2.Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi′an 710055, China;3.Design & Research Institute, Xi′an Univ. of Arch.& Tech., Xi′an 710055,China)
关键词:
短屈服段屈曲约束支撑滞回性能宽厚比外约束长度有限元方法
Keywords:
SC-BRB hysteresis performance ratio of width to thickness external constraint length finite element method
分类号:
TU391
DOI:
10.15986/j.1006-7930.2023.06.004
文献标志码:
A
摘要:
提出短屈服段屈曲约束支撑(SC-BRB),以解决在罕遇地震下钢框架结构残余层间位移角过大导致震后支撑更换困难问题.采用有限元对SC-BRB的滞回性能进行研究,分析参数对支撑的影响规律.结果表明:屈服段长度对BRB的滞回性能影响较大,集中因子α减小后,SC-BRB能较早地进入耗能阶段,拥有更高的耗能效率,但SCBRB的低周疲劳性能较差;SC-BRB具有足够的耗能能力;增加内核板的宽厚比可减小外约束的用钢量,但宽厚比的增加,会导致支撑低周疲劳性能和延性降低,建议内核宽厚比限值取15;外约束所需的最短长度随着集中因子α的增大而增大,建议取屈服段长度和0.5倍支撑总长中的较大值;建议SC-BRB选取摩擦系数不大于0.1的无粘结材料.
Abstract:
The paper, the short-yielding-section buckling-restrained brace(SC-BRB) is proposed to solve the difficulty of brace replacement due to excessive deformation and large residual inter-layer drift of steel frames under extreme seismic loading. Finite element method is applied to study the hysteresis behavior of buckling-restrained braces with different yielding section lengths. The influence of key parameters on the brace is analyzed. The results demonstrate that the yielding section length has a great influence on the hysteresis performance of BRB. After decrease of the concentration factor α, BRB can enter the plastic energy consumption stage earlier,at the same time can have higher energy consumption efficiency, but SC-BRB has poor low-cycle fatigue performance; SC-BRB has sufficient energy consumption capacity. The amount of steel used for external restraint can be reduced with the larger ratio of width to thickness in the core plate. However, low cycle fatigue performance and ductility of the core can be ineffective if the ratio of width to thickness is extreme. It is suggested that the ratio of width to thickness is no more than 15. It is also recommended that the shortest external restraint length is 1/2 of the total brace length to avoid the large stress intensity in the brace. Finally, since the friction has a significant effect on the performance of SC-BRB. Unbounded materials with friction coefficient less than 0.1 may be selected between the BRB core plate and the outer restraint.

参考文献/References:

[1]李国强, 孙飞飞, 邓仲良, 等. 屈曲约束支撑抗震性能试验研究[J]. 建筑结构, 2014, 44(18): 71-78.
 LI Guoqiang, SUN Feifei, DENG Zhongliang, et al. Experimental study on the seismic performance of bucking-restrained braces[J]. Building Structure, 2014, 44(18): 71-78.
[2]ABDUL S. A review of bucklingrestrained braced frames for seismic protection of structures[J]. Physics and Chemistry of the Earth, 2022:103203.
[3]GHOWSI A F, SAHOO D. Fragility assessment of bucklingrestrained braced frames under nearfield earthquakes[J]. Steel & Composite Structures, 2015, 19(1): 173-190.
[4]SABELLI R, MAHIN S, CHANG C. Seismic demands on steel braced frame buildings with buckling-restrained braces[J]. Engineering Structures, 2003, 25(5): 655-666.
[5]FAHNESTOCK L A, SAUSE R, RICLES J M. Seismic response and performance of bucklingrestrained braced frames[J]. Journal of Structural Engineering, 2012, 133(9): 1195-1204.
[6]王凤欣, 陈银, 王高峰, 等.屈曲约束支撑研究进展综述[J]. 河北工程大学学报(自然科学版), 2012, 29(4): 28-31,36.
 WANG Fengxin, CHEN Yin, WANG Gaofeng, et al. Review on the development of bucklingrestrained braced[J]. Journal of Hebei University Engineering(Natural Science Edition), 2012, 29(4): 28-31,36.
[7]EROCHKO J, CHRISTOPOULOS C, TREMBLAY R,et al.Residual drift response of SMRFs and BRB frames in steel buildings designed according to ASCE 7-05[J]. Journal of Structural Engineering, 2011, 137(5): 589-599.
[8]KARIMI M, YAGHIN M, NEZHAD R, et al. Seismic behavior of steel structure with buckling-restrained braces[J]. Jordan Journal of Civil Engineering, 2015, 9(4): 480-488.
[9]王永贵, 刘丹卉, 高向宇. 屈曲约束支撑滞回性能的影响因素[J]. 土木与环境工程学报(中英文), 2019, 41(2): 60-69.
 WANG Yonggui, LIU Danfen, GAO Xiangyu. Influencing factors of buckling-restrained brace hysteretic performance[J]. Journal of Civil & Environmental Engineering, 2019, 41(2): 60-69.
[10]张俊贤,白羽,刘洪义. 全钢屈曲约束支撑性能影响试验研究[J]. 四川建筑科学研究, 2021, 47(2): 6-11.
 ZHANG Junxian, BAI Yu, LIU Hongyi. Experimental research on effect of performance of all-steel buckling-restrained brace[J]. Sichuan Building Science, 2021, 47(2): 611.
[11]PETTINGA D, CHRIS C, PAMPANIN S, et al. Effectiveness of simple approaches in mitigating residual deformations in buildings[J]. Earthquake Engineering & Structural Dynamics, 2010, 36(12): 1763-1783.
[12]FAHNESTOCK L,RICLES J, SAUSE R. Experimental Evaluation of a large-scale buckling-restrained braced frame[J]. Journal of Structural Engineering, 2015, 133(9): 1205-1214.
[13]吴长, 王秀丽,周锟. 采用开孔式双钢管约束屈曲支撑的网壳结构减震分析与实验研究[J]. 西安建筑科技大学学报(自然科学版), 2012, 44(5): 637-643.
 WU Chang, WANG Xiuli, ZHOU Kun. Shaking table experimental study on vibration control of reticulated Shell with perforating double-steel tube buckling-restrained braces[J]. J. of Xi′an Univ. of Arch. & Tech.(Natural Science Edition),2012, 44(5): 637-643.
[14]HOVEIDAE N, TREMBLAY R, RAFEZY B, et al. Numerical investigation of seismic behavior of short-core all-steel buckling restrained braces[J]. Journal of Constructional Steel Research, 2015, 114(11): 89-99.
[15]PANDIKKADAVATH M, SAHOO R. Mitigation of seismic drift response of braced frames using short yielding-core BRBs[J]. Steel & Composite Structures, 2017, 23(3): 285-302.
[16]王佼娇.低屈服点钢防屈曲约束支撑及其框架抗震性能研究[D]. 北京: 清华大学, 2015.
 WANG Jiaojiao. Seismic performance on the buckling-re-strained braces and buckling-restrained braced frames with low-yieldpoint steel[D]. Beijing: Tsinghua University, 2015.
[17]姜子钦. 方矩管装配式防屈曲支撑设计理论与试验研究[D]. 北京: 清华大学, 2014.
 JIANG Ziqin. Theoretical and experimental study on design methods for double square tube assembled buckling-re-strained brace[D]. Beijing: Tsinghua University, 2014.
[18]石永久, 王萌, 王元清. 循环荷载作用下结构钢材本构关系试验研究[J]. 建筑材料学报, 2012, 15(3): 293-300.
 SHI Yongjiu, WANG Meng, WANG Yuanqing. Experimental study of structural steel constitutive relationship under cyclic loading[J]. Journal of Building Materials, 2012, 15(3): 293-300.
[19]中华人民共和国住房和城乡建设部.高层民用建筑钢结构设计规程:JGJ 99—2015[S]. 北京: 中国建筑工业出版社, 2015.
 Ministry of Housing and Urban Rural Development of the People′s Republic of China.Technical Specification For Steel Structure of Tall Building:JGJ 99—2015[S]. Beijing: China Architecture & Building Press, 2015.
[20]姚振纲, 刘祖华. 建筑结构试验[M]. 上海: 同济大学出版社, 1996.
 YAO Zhengang, LIU Zuhua. Architectural structure experiment[M]. Shanghai: Tongji University Press, 1996.
[21]中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.钢结构设计标准:GB 50017—2017[S]. 北京: 中国建筑工业出版社, 2017.
 Ministry of Housing and Urban Rural Development of the People′s Republic of China,General Administration of Quailty Supervision, Inspection and Quaratine of the People′s Republic of China.Code For Design of Steel Structures:GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017.

相似文献/References:

[1]杨应华,江 微,郭生栋.中空型钢混凝土压弯构件的滞回性能[J].西安建筑科技大学学报(自然科学版),2015,47(03):327.[doi:10.15986/j.1006-7930.2015.03.004]
 YANG Yinghua,JIANG Wei,GUO Shengdong.Hysteretic behavior of SRC hollow beam-columns[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(06):327.[doi:10.15986/j.1006-7930.2015.03.004]
[2]王先铁,王东石,李海广,等.方钢管混凝土框架-单侧开洞薄钢板剪力墙滞回性能研究[J].西安建筑科技大学学报(自然科学版),2015,47(03):333.[doi:10.15986/j.1006-7930.2015.03.005]
 WANG Xiantie,WANG Dongshi,LI Haiguang,et al.Research on the hysteretic behavior of concrete-filled square steel tubular frame-thin steel plate shear walls with side opening[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2015,47(06):333.[doi:10.15986/j.1006-7930.2015.03.005]
[3]薛建阳,薛 皓,刘祖强.型钢混凝土异形柱滞回性能分析[J].西安建筑科技大学学报(自然科学版),2014,46(06):780.[doi:10.15986/j.1006-7930.2014.06.003]
 XUE Jianyang,XUE Hao,LIU Zuqiang.Analysis on hysteretic behavior of steel reinforced concrete special-shaped column[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2014,46(06):780.[doi:10.15986/j.1006-7930.2014.06.003]
[4]赵宝成,朱 浩,何若全,等.钢管混凝土柱与桁架穿芯螺栓端板式连接节点试验研究[J].西安建筑科技大学学报(自然科学版),2012,44(02):170.[doi:10.15986/j.1006-7930.2012.02.004]
 ZHAO Bao-cheng,ZHU Hao,HE Ruo-quan,et al.Experimental study of CFT column and truss connections with steel bolt through tubular core and end plate[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2012,44(06):170.[doi:10.15986/j.1006-7930.2012.02.004]
[5]苏明周,时娇娇,房正刚,等.耗能梁腹板厚度对高强钢组合K型偏心支撑钢框架受力性能的影响[J].西安建筑科技大学学报(自然科学版),2013,45(05):622.[doi:10.15986/j.1006-7930.2013.05.003]
 SU Ming-zhou,SHI Jiao-jiao,FANG Zheng-gang,et al.The influence of changing link web thickness for mechanical properties of K dual high-strength steel EBF[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2013,45(06):622.[doi:10.15986/j.1006-7930.2013.05.003]
[6]杨应华,徐增武,杨 超.带U形阻尼器的钢框架梁柱节点滞回性能分析[J].西安建筑科技大学学报(自然科学版),2016,48(06):796.[doi:10.15986/j.1006-7930.2016.06.005]
 YANG Yinghua,XU Zengwu,YANG Chao. Hysteretic behavior analysis of beam-to-column connections with U-shaped damper[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2016,48(06):796.[doi:10.15986/j.1006-7930.2016.06.005]
[7]王先铁,李 进,贾贵强,等.方钢管混凝土框架-竖向加劲薄钢板剪力墙的滞回性能研究[J].西安建筑科技大学学报(自然科学版),2017,49(05):637.[doi:10.15986/j.1006-7930.2017.05.004]
 WANG XiantieLI JinJIA GuiqiangCHEN FengmeiLUO YaoZHENG Jiang.Hysteretic behavior study of concrete-filled square steel tubular frame-thin steel plate shear wall with vertical stiffeners[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(06):637.[doi:10.15986/j.1006-7930.2017.05.004]
[8]卢林枫,王璐璐,徐莹璐,等.钢框架弱轴梁端翼缘侧板加强式节点滞回性能有限元分析[J].西安建筑科技大学学报(自然科学版),2017,49(05):646.[doi:10.15986/j.1006-7930.2017.05.005]
 LU Linfeng,WANG Lulu,XU Yinglu,et al.Finite element analysis on hysteretic behavior of joint with side plate reinforced beam flange weakaxis connections of steel frames[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2017,49(06):646.[doi:10.15986/j.1006-7930.2017.05.005]
[9]赵宝成,孙筱玮,胡团结,等.钢框架双钢板内填混凝土剪力墙结构滞回性能试验研究[J].西安建筑科技大学学报(自然科学版),2018,50(05):625.[doi:10.15986/j.1006-7930.2018.05.002]
 ZHAO Baocheng,SUN Xiaowei,Hu Tuanjie,et al.An?experimental?study?on?the?hysteretic?behavior?of steel frame with steel-concrete-steel composite shear walls[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2018,50(06):625.[doi:10.15986/j.1006-7930.2018.05.002]

备注/Memo

备注/Memo:
收稿日期:2022-07-02修回日期:2022-09-08
基金项目:陕西省自然科学基金面上项目(2022JM-268)
第一作者:高晨啸(1999—),男,硕士生,主要从事结构工程,钢结构方面的研究.Email:1192320437@qq.com
通信作者:陈向荣(1972—),女,博士,副教授,主要从事结构工程方面的研究.E-mail:cxr90@126.com
更新日期/Last Update: 2024-02-04