参考文献/References:
[1]中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010.
[2]Comite Euro-International Du Beton. CEB-FIP Model Code1990[S]. Lausanne: Thomas Thelford, 1993.
[3]ACI COMINITTEE 209. ACI 209 R-29 Prediction of creep,shrinkage and temperature effects in concrete structures[S]. Detroit: American Concrete Institute, 1992.
[4]BAZANT Z P, BAWEJA S. Creep and shrinkage prediction model for analysis and design of concrete structures-model B3[J]. Materials and Structure, 1995, 28(6): 357-365.
[5]中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362—2018[S]. 北京: 人民交通出版社, 2018.
Ministry of Transport of the People’s Republic of China. Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts: JTG 3362—2018[S]. Beijing: China Communication Press, 2018.
[6]YU J, LUO L, FANG Q. Structure behavior of reinforced concrete beam-slab assemblies subjected to perimeter middle column removal scenario[J]. Engineering Structures, 2020, 208: 110336.
[7]KANG S B, WANG S, GAO S. Analytical study on one-way reinforced concrete beam-slab sub-structures under compressive arch action and catenary action[J]. Engineering Structures, 2020, 206: 110032.
[8]李圣童, 汪维, 梁仕发, 等. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应[J]. 爆炸与冲击, 2022, 42(7): 138-149.
LI Shengtong, WANG Wei, LIANG Shifa, et al. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion and Shock Waves, 2022, 42(7): 138-149.
[9]陈恺峰, 刘栋栋. 地铁运用库钢筋混凝土梁板耐火性能分析[J]. 建筑结构, 2020, 50(S2): 544-547.
CHEN Kaifeng, LIU Dongdong. Fire resistance performance analysis of the reinforced-concrete beams and slabs in metro service depot[J]. Building Structure, 2020, 50(S2): 544-547.
[10]王朋, 于彬, 史庆轩, 等. 钢筋混凝土板柱节点冲切破坏模型及承载力分析[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(6): 852-859.
WANG Peng, YU Bin, SHI Qingxuan, et al. Punching failure models and bearing capacity analysis of reinforced concrete slab-column connections[J]. J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(6): 852-859.
[11]韩春秀, 周东华, 姚凯程, 等. 一种计算组合梁徐变和收缩效应的新方法[J]. 华中科技大学学报(自然科学版), 2017, 45(8): 99-104.
HAN Chunxiu, ZHOU Donghua, YAO Kaicheng, et al. A new algorithm for creep and shrinkage effects of composite beams[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition), 2017, 45(8): 99-104.
[12]ZHANG H, QUAN L, WANG L, et al. Analyses on long-term behavior of composite steel-concrete beams with weak interface using a state space approach[J]. Engineering Structures, 2021, 30(3):563-581.
[13]SZYDOWSKI R S, ABUZEK B. Experimental evaluation of shrinkage, creep and prestress losses in lightweight aggregate concrete with sintered fly ash[J]. Materials, 2021, 14(14): 3895.
[14]WANG G M, ZHU L, JI X L, et al. Finite beam element for curved steel-concrete composite box beams considering time-dependent effect[J]. Materials, 2020, 13(15): 3253.
[15]ZHU L, ZHAO G Y, SU R K L, et al. Time-dependent creep and shrinkage analysis of curved steel-concrete composite box beams[J]. Mechanics of Advanced Materials and Structures, 2021,30(3):563-581.
[16]黄新, 贾烊, 李建慧, 等. 超宽混凝土主梁斜拉桥收缩徐变效应分析[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 155-159.
HUANG Xin, JIA Yang, LI Jianhui, et al. Analysis on the shrinkage and creep effects of super wide concrete girder cable-stayed bridge[J]. J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(2): 155-159.
[17]GHOLAMHOSEINI A, GILBERT R I, BRADFORD M, et al. Time-dependent deflection of composite concrete slabs[J]. ACI Structural Journal, 2014, 111(4): 765.
[18]胡狄, 翁运新, 余志武. 钢筋混凝土矩形薄板徐变效应分析[J]. 工程力学, 2011, 28(3): 185-190.
HU Di, WENG Yunxin, YU Zhiwu. Analysis of creep effect on reinforced concrete thin plates[J]. Engineering Mechanics, 2011, 28(3): 185-190.
[19]魏盟,王庆贺,王玉银, 等.考虑非均匀收缩影响的钢-混凝土组合板长期挠度设计方法研究[J].建筑结构学报,2017, 38(S1): 9-16.
WEI Meng, WANG Qinghe, WANG Yuyin, et al. Design method for long-term deflections of composite steel-concrete slabs considering non-uniform shrinkage effects[J]. Journal of Building Structures, 2017, 38(S1): 9-16.
[20]PARK H G, HWANG H J, HONG G H, et al. Immediate and long-term deflections of reinforced concrete slabs affected by early-age loading and low temperature[J]. ACI Structural Journal, 2012, 109(3): 413-422.
[21]AL-NU’MAN B S. Analytical model for estimating long-term deflections of two-way reinforced concrete slabs[J]. Journal of Engineering and Sustainable Development, 2018, 11(1): 1-12.
[22]沈蒲生, 方辉. 超静定结构徐变效应的力法分析方法[J].铁道科学与工程学报, 2006(1): 1-5.
SHEN Pusheng, FANG Hui. Creep analysis of statically indeterminate structure by force method[J]. Journal of Railway Science and Engineering, 2006(1):1-5.
[23]ZHANG H, GENG Y, WANG Y Y, et al. Long-term behavior of continuous composite slabs made with 100% fine and coarse recycled aggregate[J]. Engineering Structures, 2020, 212: 110464.
[24]W Qinghe, L Yongze, Z Huan, et al. Time-dependent behavior of multi-span continuous steel-rac composite slabs considering the loading distribution effects[J]. Engineering Mechanics, 2021, 38(2): 198-210.
[25]GHOLAMHOSEINI A, GILBERT R I, BRADFORD M. Long-term behavior of continuous composite concrete slabs with steel decking[J]. ACI Structural Journal, 2018, 115(2): 439-449
[26]TROST H. Auswirkungen des superpositionsprinzips auf kriech-und relaxations probleme bei beton-und spannbeton[J]. Beton-und Stahlbetonbau, 1967, 62(10): 230-261.
[27]周履, 陈永春. 收缩徐变[M].北京: 中国铁道出版社, 1994.
ZHOU Lv, CHEN Yongchun. Shrinkage and creep[M]. Beijing: China Railway Press, 1994.
[28]杨应恩, 李鹤翔, 杨天元. 钢筋混凝土板徐变收缩应力重分布计算[J]. 低温建筑技术, 2019, 41(8): 80-84.
YANG Yingen, LI Hexiang, YANG Tianyuan. Calculation for stress redistribution of creep and shrinkage in reinforced concrete slabs[J]. Low Temperature Architecture Technology, 2019, 41(8): 80-84.