[1]杨应恩,韩春秀,刘有菊.钢筋混凝土连续板徐变收缩效应的解析方法[J].西安建筑科技大学学报(自然科学版),2024,56(04):502-511.[doi:10.15986/j.1006-7930.2024.04.004]
 YANG Yingen,HAN Chunxiu,LIU Youju.Analytical calculation method for creep and shrinkage effect of reinforced concrete continuous slabs[J].J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(04):502-511.[doi:10.15986/j.1006-7930.2024.04.004]
点击复制

钢筋混凝土连续板徐变收缩效应的解析方法()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年04期
页码:
502-511
栏目:
出版日期:
2024-08-28

文章信息/Info

Title:
Analytical calculation method for creep and shrinkage effect of reinforced concrete continuous slabs
文章编号:
1006-7930(2024)04-0502-10
作者:
杨应恩1韩春秀2刘有菊1
(1.保山学院 工程技术学院,云南 保山 678000; 2.云南民族大学 物理与土木工程系,云南 昆明 650504)
Author(s):
YANG Yingen1HAN Chunxiu2LIU Youju1
(1.School of Engineering and Technology, Yunnan Baoshan University, Yunnan Baoshan 678000, China; 2.Department of Physics and Civil Engineering, Yunnan Minzu University, Kunming 650504, China)
关键词:
钢筋混凝土梁板结构 连续单向板 收缩徐变 次反力 梁间荷载增量
Keywords:
reinforced concrete beam-slab structure continuous one-way slabs shrinkage and creep secondary reaction force load increment on beams
分类号:
TU375.2
DOI:
10.15986/j.1006-7930.2024.04.004
文献标志码:
A
摘要:
在钢筋混凝土梁板结构中,混凝土板的徐变和收缩会使次梁产生梁间荷载增量,导致次梁的梁间荷载发生变化.计算这种梁间荷载增量的关键在于求解出连续板的徐变收缩重分布支反力,因此,提出一种分析钢筋混凝土连续板内力及支反力时变规律的解析方法,分别导出徐变和收缩各自影响下钢筋混凝土连续单向板次内力和次反力的解析公式.根据导出的公式编写Matlab计算程序,对一个连续单向板算例进行分析.结果表明:混凝土徐变对梁间荷载的改变无贡献,而混凝土收缩将使板底次梁产生额外的梁间荷载,其大小与次反力相等,且与楼板配筋率有关.采用该方法可较方便地计算出连续板的徐变收缩次内力,预估收缩导致的梁间荷载增量,公式推导建立在清晰的力学基础之上,是对连续板梁结构长期力学效应计算的一种有效补充.
Abstract:
In the reinforced concrete beam-slab structure, the creep and shrinkage of the concrete slab will cause the load increment on secondary beams, resulting in the change of the load on secondary beams. The key to calculate the load increment between beams is to solve the creep and shrinkage redistribution reaction force of continuous slabs. Therefore, an analytical method for analyzing the time-varying law of internal force and support reaction force of reinforced concrete continuous slabs is proposed in this paper, the analytical formulas of secondary internal force and secondary reaction force of reinforced concrete continuous one-way slabs under the influence of creep and shrinkage are derived respectively. According to the formulas, a MATLAB calculation program is compiled, and an example of a reinforced concrete continuous one-way slabs is analyzed by using this program. The results show that concrete creep has no contribution to the change of inter-beam load, while concrete shrinkage will cause additional inter-beam load on the secondary beam at the bottom of the slab, which is equal to the secondary reaction force and related to the reinforcement ratio of the slab. The creep and shrinkage secondary internal force of the continuous slabs can be calculated expediently, and the load increment on beams caused by shrinkage in the slab-beam structure can be estimated by using this method. The formula derivation is based on clear mechanics, which is an effective supplement to the calculation of long-term mechanical effects of continuous slab-beam structure.

参考文献/References:

[1]中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010.
[2]Comite Euro-International Du Beton. CEB-FIP Model Code1990[S]. Lausanne: Thomas Thelford, 1993.
[3]ACI COMINITTEE 209. ACI 209 R-29 Prediction of creep,shrinkage and temperature effects in concrete structures[S]. Detroit: American Concrete Institute, 1992.
[4]BAZANT Z P, BAWEJA S. Creep and shrinkage prediction model for analysis and design of concrete structures-model B3[J]. Materials and Structure, 1995, 28(6): 357-365.
[5]中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362—2018[S]. 北京: 人民交通出版社, 2018.
Ministry of Transport of the People’s Republic of China. Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts: JTG 3362—2018[S]. Beijing: China Communication Press, 2018.
[6]YU J, LUO L, FANG Q. Structure behavior of reinforced concrete beam-slab assemblies subjected to perimeter middle column removal scenario[J]. Engineering Structures, 2020, 208: 110336.
[7]KANG S B, WANG S, GAO S. Analytical study on one-way reinforced concrete beam-slab sub-structures under compressive arch action and catenary action[J]. Engineering Structures, 2020, 206: 110032.
[8]李圣童, 汪维, 梁仕发, 等. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应[J]. 爆炸与冲击, 2022, 42(7): 138-149.
LI Shengtong, WANG Wei, LIANG Shifa, et al. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion and Shock Waves, 2022, 42(7): 138-149.
[9]陈恺峰, 刘栋栋. 地铁运用库钢筋混凝土梁板耐火性能分析[J]. 建筑结构, 2020, 50(S2): 544-547.
CHEN Kaifeng, LIU Dongdong. Fire resistance performance analysis of the reinforced-concrete beams and slabs in metro service depot[J]. Building Structure, 2020, 50(S2): 544-547.
[10]王朋, 于彬, 史庆轩, 等. 钢筋混凝土板柱节点冲切破坏模型及承载力分析[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(6): 852-859.
WANG Peng, YU Bin, SHI Qingxuan, et al. Punching failure models and bearing capacity analysis of reinforced concrete slab-column connections[J]. J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2020, 52(6): 852-859.
[11]韩春秀, 周东华, 姚凯程, 等. 一种计算组合梁徐变和收缩效应的新方法[J]. 华中科技大学学报(自然科学版), 2017, 45(8): 99-104.
HAN Chunxiu, ZHOU Donghua, YAO Kaicheng, et al. A new algorithm for creep and shrinkage effects of composite beams[J]. Journal of Huazhong University of Science & Technology(Natural Science Edition), 2017, 45(8): 99-104.
[12]ZHANG H, QUAN L, WANG L, et al. Analyses on long-term behavior of composite steel-concrete beams with weak interface using a state space approach[J]. Engineering Structures, 2021, 30(3):563-581.
[13]SZYDOWSKI R S, ABUZEK B. Experimental evaluation of shrinkage, creep and prestress losses in lightweight aggregate concrete with sintered fly ash[J]. Materials, 2021, 14(14): 3895.
[14]WANG G M, ZHU L, JI X L, et al. Finite beam element for curved steel-concrete composite box beams considering time-dependent effect[J]. Materials, 2020, 13(15): 3253.
[15]ZHU L, ZHAO G Y, SU R K L, et al. Time-dependent creep and shrinkage analysis of curved steel-concrete composite box beams[J]. Mechanics of Advanced Materials and Structures, 2021,30(3):563-581.
[16]黄新, 贾烊, 李建慧, 等. 超宽混凝土主梁斜拉桥收缩徐变效应分析[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 155-159.
HUANG Xin, JIA Yang, LI Jianhui, et al. Analysis on the shrinkage and creep effects of super wide concrete girder cable-stayed bridge[J]. J. Xi’an Univ. of Arch. & Tech.(Natural Science Edition), 2019, 51(2): 155-159.
[17]GHOLAMHOSEINI A, GILBERT R I, BRADFORD M, et al. Time-dependent deflection of composite concrete slabs[J]. ACI Structural Journal, 2014, 111(4): 765.
[18]胡狄, 翁运新, 余志武. 钢筋混凝土矩形薄板徐变效应分析[J]. 工程力学, 2011, 28(3): 185-190.
HU Di, WENG Yunxin, YU Zhiwu. Analysis of creep effect on reinforced concrete thin plates[J]. Engineering Mechanics, 2011, 28(3): 185-190.
[19]魏盟,王庆贺,王玉银, 等.考虑非均匀收缩影响的钢-混凝土组合板长期挠度设计方法研究[J].建筑结构学报,2017, 38(S1): 9-16.
WEI Meng, WANG Qinghe, WANG Yuyin, et al. Design method for long-term deflections of composite steel-concrete slabs considering non-uniform shrinkage effects[J]. Journal of Building Structures, 2017, 38(S1): 9-16.
[20]PARK H G, HWANG H J, HONG G H, et al. Immediate and long-term deflections of reinforced concrete slabs affected by early-age loading and low temperature[J]. ACI Structural Journal, 2012, 109(3): 413-422.
[21]AL-NU’MAN B S. Analytical model for estimating long-term deflections of two-way reinforced concrete slabs[J]. Journal of Engineering and Sustainable Development, 2018, 11(1): 1-12.
[22]沈蒲生, 方辉. 超静定结构徐变效应的力法分析方法[J].铁道科学与工程学报, 2006(1): 1-5.
SHEN Pusheng, FANG Hui. Creep analysis of statically indeterminate structure by force method[J]. Journal of Railway Science and Engineering, 2006(1):1-5.
[23]ZHANG H, GENG Y, WANG Y Y, et al. Long-term behavior of continuous composite slabs made with 100% fine and coarse recycled aggregate[J]. Engineering Structures, 2020, 212: 110464.
[24]W Qinghe, L Yongze, Z Huan, et al. Time-dependent behavior of multi-span continuous steel-rac composite slabs considering the loading distribution effects[J]. Engineering Mechanics, 2021, 38(2): 198-210.
[25]GHOLAMHOSEINI A, GILBERT R I, BRADFORD M. Long-term behavior of continuous composite concrete slabs with steel decking[J]. ACI Structural Journal, 2018, 115(2): 439-449
[26]TROST H. Auswirkungen des superpositionsprinzips auf kriech-und relaxations probleme bei beton-und spannbeton[J]. Beton-und Stahlbetonbau, 1967, 62(10): 230-261.
[27]周履, 陈永春. 收缩徐变[M].北京: 中国铁道出版社, 1994.
ZHOU Lv, CHEN Yongchun. Shrinkage and creep[M]. Beijing: China Railway Press, 1994.
[28]杨应恩, 李鹤翔, 杨天元. 钢筋混凝土板徐变收缩应力重分布计算[J]. 低温建筑技术, 2019, 41(8): 80-84.
YANG Yingen, LI Hexiang, YANG Tianyuan. Calculation for stress redistribution of creep and shrinkage in reinforced concrete slabs[J]. Low Temperature Architecture Technology, 2019, 41(8): 80-84.

备注/Memo

备注/Memo:
收稿日期:2022-12-04修回日期:2024-03-18
基金项目:国家自然科学基金(52068068,51708486); 保山学院自然科学研究项目(ZKJC202001)
第一作者:杨应恩(1990—),男,硕士,讲师,主要研究方向为钢筋混凝土结构及组合结构理论计算.E-mail:534117476@qq.com
通信作者:韩春秀(1980—),女,博士,副教授,主要研究方向为组合结构新型理论计算方法研究.E-mail:593416010@qq.com
更新日期/Last Update: 2024-08-28