[1]张 勇,钱家志.循环荷载下渭北地区黄土动力特性分析[J].西安建筑科技大学学报(自然科学版),2024,56(04):535-543.[doi:10.15986/j.1006-7930.2024.04.007]
 ZHANG Yong,QIAN Jiazhi.Analysis of dynamic properties of loess in Weibei area under cyclic loading[J].J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition),2024,56(04):535-543.[doi:10.15986/j.1006-7930.2024.04.007]
点击复制

循环荷载下渭北地区黄土动力特性分析()
分享到:

西安建筑科技大学学报(自然科学版)[ISSN:1006-7930/CN:61-1295/TU]

卷:
56
期数:
2024年04期
页码:
535-543
栏目:
出版日期:
2024-08-28

文章信息/Info

Title:
Analysis of dynamic properties of loess in Weibei area under cyclic loading
文章编号:
1006-7930(2024)04-0535-09
作者:
张 勇12钱家志1
(1.西安建筑科技大学 土木工程学院,陕西 西安 710055; 2.西安建筑科技大学 管理学院,陕西 西安 710055)
Author(s):
ZHANG Yong12QIAN Jiazhi1
(1.School of Civil Engineering, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China; 2.School of Management, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China)
关键词:
动本构关系 动剪切模量比 阻尼比 动强度 黄土震陷
Keywords:
dynamic constitutive relationship dynamic shear modulus ratio damping ratio dynamic strength loess seismic subsidence
分类号:
TU444
DOI:
10.15986/j.1006-7930.2024.04.007
文献标志码:
A
摘要:
为研究渭北地区的黄土动力学特性分析,通过TYS-20型土动三轴试验机,研究不同围压下黄土的动本构关系以及动骨干曲线,分析黄土的动剪模量比和阻尼比的关系,提出动剪切模量衰减模型和阻尼增长模型; 研究不同围压对黄土动强度和残余应变的影响,从理论上解释黄土动力特性变化的原因,从而更好地保证黄土震陷对地下空间影响最小化; 最后对比黄土震前震后微结构,并进行机理分析对该地区地下空间发展提供理论意义.研究结果显示:黄土的动本构关系符合双曲线模型; 动剪模量比随动剪应变呈负指数衰减关系,而阻尼比随动剪应变呈对数关系增长; 动强度和动强度指标受试验条件的影响较大,其中动强度随围压的增大而增大,表明动强度分析能较好地说明黄土的动力特性变化规律; 根据电子显微镜对比土体震前震后微结构,并进行机理分析,为该地区地下空间发展提供理论支持.通过研究表明,渭北地区黄土在循环荷载作用下不易产生振动变形,属于轻微震陷区.
Abstract:
In order to study the dynamic characteristics of loess in Weibei area, the dynamic constitutive relationship and dynamic backbone curve of loess under different confining pressures were studied by TYS-20 soil dynamic triaxial testing machine. The relationship between dynamic shear modulus ratio and damping ratio of loess was analyzed, and a dynamic shear modulus attenuation model and a damping growth model were proposed. The influence of different confining pressures on the dynamic strength and residual strain of loess was studied, and the reasons for the change of dynamic characteristics of loess were explained theoretically, so as to better ensure the minimization of the influence of loess seismic subsidence on underground space. Finally, the microstructure of loess before and after earthquake was compared, and the mechanism analysis was carried out to provide theoretical significance for the development of underground space in this area. The results show that the dynamic constitutive relationship of loess conforms to the hyperbolic model, and the dynamic shear modulus ratio decreases exponentially with the dynamic shear strain, while the damping ratio increases logarithmically with the dynamic shear strain. The dynamic strength and dynamic strength index are greatly affected by the test conditions, and the dynamic strength increases with the increase of confining pressure, indicating that the dynamic strength analysis can better explain the dynamic characteristics of loess. The microstructure of soil before and after earthquake is compared by electron microscope. The microstructure of soil before and after earthquake is compared by electron microscope, and the mechanism analysis is carried out, which provides theoretical support for the development of underground space in this area. The results show that the loess in Weibei area, which belongs to slight seismic subsidence area, is less prone to vibration deformation under cyclic loading.

参考文献/References:

[1]CASAGRANDE A, CARRILLO N. Shear failure of ani-sotropic materials[J]. Boston Society of Civil Engineering Journal(JA), 1944, 31(2): 74-87.
[2]WHITTLE A J, KAVVADAS M J. Formulation of MIF-E3 constitutive model for over consolidated clays[J]. Journal of Geotechnical Engineering, 1994, 120(1): 173-198.
[3]王兰民, 石玉成, 刘旭, 等. 黄土动力学[M]. 北京:地震出版社, 2003: 85-143.
WANG Lanmin,SHI Yucheng,LIU Xu, et al. Loess dynamics[M]. Beijing:Earthquake Press, 2003: 85-143.
[4]CHE G, WANG P, WANG Q, et al. Experimental study on the influence of seismic subsidence of loess under bidirectional loading modes[J]. Earthquake Research Advances, 2021, 1(4): 100064.
[5]KATUWAL S,NORGAARD T,MOLDRUP P,et al.Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography[J]. Geoderma,2015,237/238: 9-20.
[6]LIT C,SHAO M A,JIA Y H.Application of X-ray to mography to quantify macropore characteristics of loess soil under two perennial plants[J].European Journal of Soil Science,2016,67(3):266-275.
[7]朱元青, 陈正汉. 原状Q3黄土在加载和湿陷过程中细观结构动态演化的CT三轴试验研究[J]. 岩土工程学报, 2009, 31(8): 1219-1228.
ZHU Yuanqing,CHEN Zhenghan.Experimental study on dynamic evolution of meso-structure of intact Q3 loess during loading and collapse using CT and triaxial apparatus[J]. Chinese Journal of Civil Engineering, 2009,31(8): 1219-1228.
[8]王雪艳, 袁一力, 张珊珊. 陕北地区黄土自然高边坡与填方边坡可靠度分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(5): 665-672.
WANG Xueyan, YUAN Yili, ZHANG Shanshan. Reliability analysis of natural high loess slope and fill slope in northern Shaanxi region[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2021, 53(5): 665-672.
[9]刘妮娜, 温凯, 飞菲, 等. 西安近断层区黄土动力特性研究[J/OL]. 西安建筑科技大学学报(自然科学版), 1-10[2024-05-31]. http://kns.cnki.net/kcms/detail/61.1295.TU.20240322.1538.004.html.
LIU Nina, WEN Kai, FEI Fei, et al. Study on dynamic characteristics of loess in Xi'an near fault zone[J/OL]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 1-10[2024-05-31]. http://kns.cnki.net/kcms/detail/61.1295.TU.20240322.1538.004.html.
[10]李帅, 王家鼎, 李承霖, 等. 循环荷载下黄土的动力特性试验研究及微观结构分析[J]. 干旱区资源与环境, 2021, 35(12): 142-149.
LI Shuai,WANG Jiading,LI Chenglin, et al. Experimental study on dynamic characteristics and microstructure analysis of loess under cyclic loading[J]. Arid Zone Resources and Environment, 2021, 35(12): 142-149.
[11]王峻,王强, 王杰民. 震后黄土动力学特性试验研究[J]. 水文地质工程地质, 2010, 37(4): 63-67.
WANG Jun, WANG Qiang, WANG Jiemin. Experimental study on dynamic characteristics of loess after earthquake[J]. Hydrogeology Engineering Geology, 2010, 37(4): 63-67.
[12]HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: Design equations and curves[J]. Geotechnical Special Publication, 1972, 98(118): 669-686.
[13]ISHIHARA K. Modeling of stress-strain relations of soils in cyclic loading[C]//Proc 5th International Conference on Numerical Methods in Geomechaniacs.Nagoya: Publ Rotterdam, 1985.
[14]王谦,李娜,王平,等. 甘南地区黄土的动模量与阻尼比特性研究[J].岩土工程学报, 2017, 39(S1):192-197.
WANG Qian,LI Na, WANG Ping,et al. Characterization of dynamic modulus and damping ratio of loess in Gannan area[J]. Journal of Geotechnical Engineering, 2017, 39(S1): 192-197.
[15]王谦,马金莲,马海萍,等. 饱和黄土动剪切模量和阻尼比的试验研究[J].岩石力学与工程学报, 2019, 38(9): 1919-1927.
WANG Qian,MA Jinlian,MA Haiping, et al. Experimental study on dynamic shear modulus and damping ratio of saturated loess[J]. Journal of Rock Mechanics and Engineering, 2019, 38(9): 1919-1927.
[16]文少杰,张吾渝,王鹏. 重复循环荷载作用下原状黄土动力特性试验研究[J].地震工程学报, 2020, 42(6): 1659-1665.
WEN Shaojie,ZHANG Wuyu,WANG Peng. Experimental study on dynamic characteristics of in-situ loess under repeated cyclic loading[J]. Journal of Earthquake Engineering, 2020, 42(6): 1659-1665.
[17]王燕,姚仰平,胡玉定,等. 不同含水率原状黄土的强度与变形特性试验研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(3): 325-330.
WANG Yan,YAO Yangping,HU Yuding, et al. Experimental study on strength and deformation characteristics of primary loess with different water content[J]. J. Xi'an Univ. of Arch. & Tech.(Natural Science Edition), 2022, 54(3): 325-330.
[18]YILMAZ M T, PEKCAN O, BAKIR B S. Undrained cyclic shear and deformation behavior of silt-clay mixtures of Adapazan, Turkey[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(7): 22-27.
[19]QIU Junling, WANG Xiuling, LAI Jinxing, et al. Response characteristics and preventions for seismic subsidence of loess in Northwest China[J]. Natural Hazards, 2018, 92: 1909-1935.
[20]LI Ping, GU Junru, LIU Yingci, et al. The study of soft soil seismic subsidence based on the 3D OpenSees model[J]. Geoenvironmental Disasters, 2022, 9(1): 1-11.
[21]WANG Ping, XU Shuya, SHAO Shengjun, et al. Mesoscopic characteristics and performance evaluation of loess treated by different anti-seismic subsidence technologies[J]. Frontiers in Earth Science, 2022, 9: 1423-1426.
[22]陈正汉. 非饱和土与特殊土力学的基本理论研究[J]岩土工程学报, 2014, 36(2): 201-272.
CHEN Zhenghan. On basic theories of unsaturated soils and special soils[J].Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272.
[23]CHEN Huie, SHAO Wenchong, JIANG Yaling. Dynamic characteristics of Xianyang loess based on microscopic analysis: A quantitative evaluation[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 8247-8263.
[24]姚志华, 陈正汉, 李加贵,等. 基于CT技术的原状黄土细观结构动态演化特征[J]. 农业工程学报, 2017, 33(13): 134-142.
YAO Zhihua, CHEN Zhenghan, LI Jiagui, et al. Meso-structure dynamic evolution characteristic of undis-turbed loess based on CT technology[J]. Transactions of the Chinese Society of Agricultural Engineering. 2017, 33(13): 134-142.
[25]LU Tuo, TANG Yaming, TIE Yongbo, et al. Fractal analysis and permeability evaluation of micro-macro pores in loess based on mercury intrusion tests[J]. Journal of Zhejiang University-Science A(Applied Physics Engineering), 2023, 24(7): 584-596.

备注/Memo

备注/Memo:
收稿日期:2023-07-31修回日期:2024-06-04
基金项目:引汉济渭联合基金项目(2021JLM-52)
第一作者:张 勇(1965—),男,博士,教授级高工,主要研究方向为输水管线、黄土震陷、绿色建造.E-mail:xadayong@126.com
更新日期/Last Update: 2024-08-28