[1]郝际平,于金光,王先铁,等.半刚性节点钢框架-十字加劲钢板剪力墙结构的数值分析[J].西安建筑科技大学学报:自然科学版,2012,44(02):153-158.[doi:10.15986/j.1006-7930.2012.02.001]
 HAO Ji-ping,YU Jin-guang,WANG Xian-tie,et al.Numerical simulation of sheer walls of semi-rigid composite steel frame with stiffened steel plate[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2012,44(02):153-158.[doi:10.15986/j.1006-7930.2012.02.001]
点击复制

半刚性节点钢框架-十字加劲钢板剪力墙结构的数值分析()
分享到:

西安建筑科技大学学报:自然科学版[ISSN:1006-7930/CN:61-1295/TU]

卷:
44
期数:
2012年02期
页码:
153-158
栏目:
出版日期:
2012-04-30

文章信息/Info

Title:
Numerical simulation of sheer walls of semi-rigid composite steel frame with stiffened steel plate
文章编号:
1006-7930(2012)02-0153-06
作者:
郝际平于金光王先铁郭宏超虎 奇
(西安建筑科技大学土木工程学院,陕西 西安 710055)
Author(s):
HAO Ji-ping YU Jin-guang WANG Xian-tie GUO Hong-chao HU Qi
(School of Civil Engineering, Xian University of Architecture and Technology, Xian 710055, China)
关键词:
钢框架半刚性节点钢板剪力墙十字加劲滞回曲线数值模拟非线性有限元
Keywords:
steel frame semi-rigid composite steel plate shear wall cross-stiffened hysteretic curves numerical simulation nonlinear finite element
分类号:
TU 392.4
DOI:
10.15986/j.1006-7930.2012.02.001
文献标志码:
A
摘要:
为了研究半刚性节点钢框架-加劲钢板剪力墙结构体系的抗震性能和传力机理,模拟实际框剪结构的底部两层,对一榀单跨两层1/3缩尺半刚性节点钢框架-十字加劲钢板剪力墙结构进行了抗震拟静力试验研究,在试验模型的基础上,建立了非线性有限元模型,并验证了模型的有效性.考虑影响结构抗震性能的4个主要因素:节点刚度、剪力墙厚度、框架柱的刚度、肋板刚度比,进行了4个系列16个有限元模型的变参数分析.结果表明:降低节点刚度有利于提高结构的延性和耗能能力;增加柱的刚度和肋板厚度可提高结构的初始刚度、承载力和延性性能;增加内填墙板的厚度,将降低试件的延性性能;内填墙板在加载初期非常有效,承担70%~85%的水平剪力,研究为该种结构体系的工程应用和理论分析提供依据
Abstract:
In order to study the seismic behavior and force distribution in the structural system of the semi-rigid composite steel frame with steel plate shear walls, based on the experiment of a one-third scale, one-bay, two-story semi-rigid composite steel frame model with cross-stiffened steel plate shear wall under lateral cyclic loads, a non-linear finite element analysis model was built, and then the finite-element analysis model was validated by experimental data. Parametric analyses of 4series and 16finite element models were performed, in which 4main influential factors including rotational stiffness of connections, different infill wall slenderness ratios, column flexibility, rigidity of stiffener were considered. The results showed that the reduction rotational stiffness of the connections may enhance the width of infill walls. Use of suitable parametric of column flexibility, rigidity of stiffener would improve the performance of the whole structure. The infill plates are the structure with the infill plates are very effective in the initial stages of loading. The infill plates undertakes70%~85%of overall lateral load. The research provides a basis for engineering application and theoretical analysis of the structural system

参考文献/References:

[1] 郝际平,郭宏超.半刚性连接钢框架-钢板剪力墙结构抗震性能试验研究[J].建筑结构学报,2011,21(3):33-40.
HAO Ji-ping,GUO Hong-chao.Seismic Performance of Semi-rigid Composite Steel Frame with Steel Plate Shear Walls[J].Journal of Building Structures,2011,21(3):33-40.
[2] 于金光,郝际平.腹板双角钢连接框架-非加劲薄钢板剪力墙抗震性能试验研究[J].地震工程与工程振动,2011,31(5):84-90.
YU Jin-guang,HAO Ji-ping.Experimental Study on Seismic Behavior of Double Web-angle Connected Steel Frameunstiffened Thin Steel Plate Shear Walls[J].Journal of Earthquake Engineering and Engineering Vibration,2011,31(5):84-90.
[3] KISHI N,CHEN W F,GOTO Y,et al.Effective length factor of columns in semi-rigid and unbraced frame[J].J Struct Eng,ASCE1997,123(3):313-320.
[4] KUHN P,PETERSON J P,LEVIN L R.A Summary of Diagonal Tension,Part 1-Methods of Analysis[R].National Advisory Committee for Aeronautics,Technical note:2661-2662,1952.
[5] WAGNER H.Flat Sheet Metal Girders with Very Thin Webs[R].Technical Memorandum No.606,National Advisory Committee for Aeronautics,1931.
[6] CSA (2001),CAN/CSA S16-01,Limit States Design of Steel Structures[S].Toronto,ON,Canada.
[7] AISC(2005c),ANSI/AISC 341-05,Seismic Provisions for Structural Steel Buildings[S].American Institute of Steel Construction,Chicago,IL.

相似文献/References:

[1]郝际平,刘 斌,邵大余,等.生土填充墙钢框架结构抗剪性能分析[J].西安建筑科技大学学报:自然科学版,2013,45(05):609.[doi:10.15986/j.1006-7930.2013.05.001]
 HAO Ji-ping,LIU Bin,SHAO Da-yu,et al.Analysis on the shear performance of steel frames with adobe infilled walls[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2013,45(02):609.[doi:10.15986/j.1006-7930.2013.05.001]
[2]王玉田1,2,王 燕2,等.钢框架加强型梁柱连接的抗震机理研究。[J].西安建筑科技大学学报:自然科学版,2011,43(01):31.[doi:DOI:10.15986/j.1006-7930.2011.01.021]
 ,surface water heat pump;life cycle total cost;load characteristic;water supply energy consumption;water supply temperature[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2011,43(02):31.[doi:DOI:10.15986/j.1006-7930.2011.01.021]
[3]薛 强,等.基于RBF 神经网络的钢框架梁端节点损伤识别[J].西安建筑科技大学学报:自然科学版,2011,43(02):192.[doi:DOI :10.15986/j .1006-7930.2011.02.020]
 XUE Qiang,HAO J i-ping,et al.Research on steel frame parameters identification based on RBF neural networks[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2011,43(02):192.[doi:DOI :10.15986/j .1006-7930.2011.02.020]
[4]钟炜辉,孟 宝,崔 炜,等.钢框架腹板双角钢连接梁柱子结构抗倒塌性能分析[J].西安建筑科技大学学报:自然科学版,2016,48(01):89.[doi:10.15986/j.1006-7930.2016.01.015]
 ZHONG Weihui,MENG Bao,CUI Wei,et al.Analysis of collapse resistance for beam-column substructure with double web angles connection of steel frame[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2016,48(02):89.[doi:10.15986/j.1006-7930.2016.01.015]
[5]李刚,赵严峰,李博凡,等.短屈服段屈曲约束支撑钢框架抗震性能研究[J].西安建筑科技大学学报:自然科学版,2023,55(06):801.[doi:10.15986/j.1006-7930.2023.06.002]
 LI Gang,ZHAO Yanfeng,LI Bofan,et al.Seismic behavior of steel frames with short yield buckling-restrained braces[J].J.Xi’an Univ. of Arch. & Tech.:Natural Science Edition,2023,55(02):801.[doi:10.15986/j.1006-7930.2023.06.002]

备注/Memo

备注/Memo:
收稿日期:2011-04-02 修改稿日期:2012-03-20
基金项目:国家自然科学基金资助项目(51178381);国家自然科学青年基金资助项目(51108369);博士学科点专项科研基金(20096120110004);教育部博士点新教师基金(20116120120008);陕西省教育厅自然科学研究项目(11JK0942)
作者简介:郝际平(1959-),男,山西襄垣人,教授,博士生导师,从事结构工程研究
更新日期/Last Update: 2015-09-02